NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE52599 Query DataSets for GSE52599
Status Public on Jan 09, 2014
Title Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing
Organism Solanum tuberosum
Experiment type Non-coding RNA profiling by high throughput sequencing
Summary Purpose: MicroRNAs (miRNAs) are ubiquitous components of endogenous plant transcriptome. miRNAs are small, single-stranded and ~21 nt long RNAs which regulate gene expression at the post-transcriptional level and are known to play essential roles in various aspects of plant development and growth. Previously, a number of miRNAs have been identified in potato through in silico analysis and deep sequencing approach. However, identification of miRNAs through deep sequencing approach was limited to a few tissue types and developmental stages. This study reports the identification and characterization of potato miRNAs in three different vegetative tissues and four stages of tuber development by high throughput sequencing.
Results: Small RNA libraries were constructed from leaf, stem, root and four early developmental stages of tuberization and subjected to deep sequencing, followed by bioinformatics analysis. A total of 89 conserved miRNAs (belonging to 33 families), 147 potato-specific miRNAs (with star sequence) and 112 candidate potato-specific miRNAs (without star sequence) were identified. The digital expression profiling based on TPM (Transcripts Per Million) and qRT-PCR analysis of conserved and potato-specific miRNAs revealed that some of the miRNAs showed tissue specific expression (leaf, stem and root) while a few demonstrated tuberization stage-specific expressions. Targets were predicted for identified conserved and potato-specific miRNAs, and predicted targets of four conserved miRNAs, miR160, miR164, miR172 and miR171, which are ARF16 (Auxin Response Factor 16), NAM (NO APICAL MERISTEM), RAP1 (Relative to APETALA2 1) and HAIRY MERISTEM (HAM) respectively, were experimentally validated using 5′RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). Gene ontology (GO) analysis for potato-specific miRNAs was also performed to predict their potential biological functions.
Conclusions: We report a comprehensive study of potato miRNAs at genome-wide level by high-throughput sequencing and demonstrate that these miRNAs have tissue and/or developmental stage specific expression profile. Also, predicted targets of conserved miRNAs were experimentally confirmed for the first time in potato. Our findings indicate the existence of extensive and complex small RNA population in this crop and suggest their important role in pathways involved in diverse biological processes, including tuber developmental process.
 
Overall design Total seven (Leaf, Root, Stem, Potato Tuber stage 0(PT0),Potato Tuber stage 1(PT1),Potato Tuber stage 2(PT2),Potato Tuber stage 3(PT3) ) small RNA libraries were consctructed and sequenced by deep sequencing using Illumina GAIIx.
 
Contributor(s) Lakhotia N, Joshi G, Bhardwaj AR, Katiyar-Agarwal S, Agarwal M, Jagannath A, Goel S, Kumar A
Citation(s) 24397411
Submission date Nov 21, 2013
Last update date May 15, 2019
Contact name Amar Kumar
E-mail(s) akumar23j@gmail.com
Phone +91-11-27662609
Organization name University of Delhi
Department Botany
Street address Chatra Marg
City New Delhi
State/province Delhi
ZIP/Postal code 110007
Country India
 
Platforms (1)
GPL15787 Illumina Genome Analyzer IIx (Solanum tuberosum)
Samples (7)
GSM1272350 Leaf(L)
GSM1272351 Stem(S)
GSM1272352 Root(R)
Relations
BioProject PRJNA229455
SRA SRP033230

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE52599_RAW.tar 474.8 Mb (http)(custom) TAR (of TXT)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap