Table 1b.

Molecular Genetics of Joubert Syndrome: Less Common Genetic Causes

Gene 1, 2, 3Comment
ARL13B 2 families; phenotype ranged from classic JS to JS w/occipital encephalocele & pigmentary retinopathy [Cantagrel et al 2008]; no deletions/duplications reported.
B9D1 2 families, both w/"pure" form of JS; pathogenic variants in this gene also cause MKS. No deletions/duplications reported [Romani et al 2014].
B9D2 2 families, both w/polydactyly & 1 w/encephalocele, cleft palate, & tongue hamartomas; pathogenic variants in this gene also cause MKS. No deletions/duplications reported [Bachmann-Gagescu et al 2015a].
C2CD3 2 families identified in 1 series, both w/cleft palate and/or oral frenulae suggestive of features of OFD. No deletions/duplications reported [Bachmann-Gagescu et al 2015a].
CEP41 3 families w/8 individuals w/JS described w/pathogenic variants in CEP41, based on screening at least 725 individuals w/JS, many of whom had been excluded for pathogenic variants in known JS-related genes. Slightly more than 50% of affected persons have demonstrated unilateral or bilateral postaxial polydactyly. Only 2 individuals have evidence of retinal disease, 1 of whom had unilateral coloboma, unilateral kidney disease, & ambiguous genitalia & died at age 7 days. Within 1 family, all 5 affected males had micropenis & 2 had growth hormone deficiency. Only splice site variants have been identified; no deletions/duplications reported [Lee et al 2012a].
CEP104 3 families, all w/"pure" form of JS; no deletions/duplications reported [Srour et al 2015].
CEP120 4/491 individuals w/JS had missense, frameshift, nonsense, or splice variants in this gene; phenotypes ranged from "pure" JS to MKS, OFD, and JS-JATD; no large deletions/duplications reported [Shaheen et al 2015b, Roosing et al 2016a].
IFT172 1/440 individuals with JS had missense pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. 2/12 families w/missense and/or truncating pathogenic variants had overlapping features of JS & JS-JATD (one w/Mainzer-Saldino syndrome features as well) including retinal dystrophy, hepatic fibrosis, NPHP, & cerebellar vermis hypoplasia. No deletions/duplications reported [Halbritter et al 2013].
KATNIP (KIAA0556)Homozygous truncating pathogenic variants in this gene identified in 3 sibs of a consanguineous family; 2/3 had panhypopituitarism (the male had micropenis & the female had a hypoplastic pituitary on MRI) [Sanders et al 2015]. In another consanguineous family, 2 sibs w/classic JS features had homozygous truncating pathogenic variants; no deletions/duplications reported [Roosing et al 2016b].
KIF7 3/440 families had pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. Individuals often have OFD features, w/or w/o other CNS findings such as agenesis/hypoplasia of the corpus callosum, hydrocephalus, & macrocephaly [Dafinger et al 2011, Putoux et al 2011]. The combination of polydactyly & these CNS findings suggests acrocallosal and/or hydrolethalus syndromes [Putoux et al 2011]. Nonsense & frameshift pathogenic variants predominate; no deletions/duplications reported.
OFD1 X-linked; no deletions/duplications reported. Pathogenic variants in this gene identified in 4/440 families [Bachmann-Gagescu et al 2015a] & in 2/250 families (2/84 w/only males affected) [Coene et al 2009]. Features include encephalocele, hydrocephalus, macrocephaly, polymicrogyria, polydactyly, & retinal disease. 1 family also had renal cystic disease, hydrocephalus, macrocephaly, & polymicrogyria [Field et al 2012].
PDE6D In 1 consanguineous family w/3 sibs (w/a homozygous splice site variant), phenotype included renal hypoplasia, retinal dystrophy, microphthalmia, ocular coloboma, & postaxial polydactyly [Thomas et al 2014].
POC1B A homozygous pathogenic missense variant in this gene was identified in an extended Iraqi family with LCA, enlarged, polycystic kidneys (resembling ADPKD rather than NPHP), & classic features of JS w/o liver fibrosis. Of note, the same homozygous pathogenic variant was identified in a family w/severe & slowly progressive cone-rod dystrophy w/o features of JS [Beck et al 2014]. No deletions/duplications reported.
TCTN1 1/440 families had pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. Two sibs w/homozygous splice site variants had fronto-temporal pachygyria but no retinal or renal findings [Garcia-Gonzalo et al 2011]. No deletions/duplications reported.
TCTN3 1/440 families had pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. 1/58 families (for whom known JS-genes were excluded) had biallelic pathogenic variants [Thomas et al 2012]. Homozygous truncating variants were identified in 5 pedigrees w/a severe prenatal lethal form of OFD type IV (Mohr-Majewski syndrome); however, since the phenotype also included postaxial polydactyly, cystic renal disease, bile duct proliferation, & occipital encephalocele, it is debatable whether this represents a type of OFD or MKS. 2 probands from a Turkish family w/JS, who had a homozygous missense variant, had scoliosis w/variable polydactyly, oral findings, horseshoe kidney, & ventricular septal defect [Thomas et al 2012]. No deletions/duplications reported.
TMEM107 Of 238 individuals w/JS or "OFD VI," 1 set of consanguineous twins who were homozygous for a missense variant in this gene had retinopathy & features of OFD including postaxial polydactyly; another male w/classic JS & retinopathy had compound heterozygous pathogenic variants [Lambacher et al 2016]. No deletions/duplications reported.
TMEM138 1/440 families had pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. 11 individuals from 8 consanguineous Arab families had coloboma (6), retinal dystrophy (3), cystic kidney, or NPHP (3). Polydactyly has been observed; 1 fetus w/MKS had an encephalocele [Lee et al 2012b]. No deletions/duplications reported
TMEM231 Pathogenic variants in this gene account for some individuals w/JS of French Canadian descent. 3 persons in 2 families had a severe phenotype (lack of ambulation, aggressive behaviors, lack of independent living skills). 2 have macroscopic renal cysts & retinal disease; 1 has postaxial polysyndactyly [Srour et al 2012a]. A pathogenic gene conversion event between this gene & its pseudogene has been described [Maglic et al 2016].
TMEM237 1/440 families had pathogenic variants in this gene [Bachmann-Gagescu et al 2015a]. Only 2/201 individuals w/JS & 90 individuals w/MKS/JS had pathogenic variants in this gene [Huang et al 2011]. This form of JS was originally described as MKS in the Hutterite population [Boycott et al 2007], in which the carrier rate is estimated at 6% [Huang et al 2011]. Encephalocele, hydrocephalus, & cystic kidney disease are common. The "morning glory disc anomaly" has also been described in an extended family from Austria w/biallelic pathogenic variants [Janecke et al 2004, Huang et al 2011]. A 24-kb deletion including TMEM237 exon 1 & 1a extending into the adjacent gene has been identified [Watson et al 2016].
TTC21B To date, no individuals w/JS & biallelic pathogenic variants in this gene have been reported. The functional significance of a single (heterozygous) pathogenic variant is unknown. No clinical information was provided on 3 persons with a heterozygous change. See TTC21B, Pathogenic variants (pdf).
In a clinically diverse cohort of 753 individuals w/a ciliopathy, 5% had pathogenic variants in this gene; however, only 33% had a 2nd pathogenic variant in a different ciliopathy gene [Davis et al 2011].
ZNF423 1 consanguineous family w/infantile-onset NPHP, cerebellar vermis hypoplasia, & situs inversus had homozygous pathogenic missense variants in this gene; 2/96 other individuals w/JS had heterozygous changes in the gene in specific interaction domains, leading to proposed (but not proven) loss of function via a dominant-negative mechanism [Chaki et al 2012]. No deletions/duplications reported.

Pathogenic variants of any one of the genes listed in this table are reported in only a few families (i.e., account for <1% of JS).

ADPKD = autosomal dominant polycystic kidney disease; JS-JATD = Jeune asphyxiating thoracic dystrophy; LCA = Leber congenital amaurosis; MKS = Meckel syndrome; NPHP = nephronophthisis; OFD = oral-facial-digital syndrome

1.

Genes are listed alphabetically.

2.
3.

Genes are not described in detail in Molecular Genetics, but may be included here (pdf).

From: Joubert Syndrome

Cover of GeneReviews®
GeneReviews® [Internet].
Adam MP, Feldman J, Mirzaa GM, et al., editors.
Seattle (WA): University of Washington, Seattle; 1993-2024.
Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

GeneReviews® chapters are owned by the University of Washington. Permission is hereby granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that (i) credit for source (http://www.genereviews.org/) and copyright (© 1993-2024 University of Washington) are included with each copy; (ii) a link to the original material is provided whenever the material is published elsewhere on the Web; and (iii) reproducers, distributors, and/or translators comply with the GeneReviews® Copyright Notice and Usage Disclaimer. No further modifications are allowed. For clarity, excerpts of GeneReviews chapters for use in lab reports and clinic notes are a permitted use.

For more information, see the GeneReviews® Copyright Notice and Usage Disclaimer.

For questions regarding permissions or whether a specified use is allowed, contact: ude.wu@tssamda.

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.