Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Structural Aspects of GPCR-G Protein Coupling.

Chung KY.

Toxicol Res. 2013 Sep;29(3):149-55. doi: 10.5487/TR.2013.29.3.149.

2.

Structural mechanism of G protein activation by G protein-coupled receptor.

Duc NM, Kim HR, Chung KY.

Eur J Pharmacol. 2015 Sep 15;763(Pt B):214-22. doi: 10.1016/j.ejphar.2015.05.016. Epub 2015 May 14. Review.

PMID:
25981300
3.

Characterization of GRK2 RH domain-dependent regulation of GPCR coupling to heterotrimeric G proteins.

Sterne-Marr R, Dhami GK, Tesmer JJ, Ferguson SS.

Methods Enzymol. 2004;390:310-36.

PMID:
15488186
4.

Relevance of rhodopsin studies for GPCR activation.

Deupi X.

Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13. Review.

5.

Complexes between photoactivated rhodopsin and transducin: progress and questions.

Jastrzebska B, Tsybovsky Y, Palczewski K.

Biochem J. 2010 Apr 28;428(1):1-10. doi: 10.1042/BJ20100270. Review.

6.
7.

Mechanistic insights into GPCR-G protein interactions.

Mahoney JP, Sunahara RK.

Curr Opin Struct Biol. 2016 Dec;41:247-254. doi: 10.1016/j.sbi.2016.11.005. Epub 2016 Nov 18. Review.

8.

Structural features of β2 adrenergic receptor: crystal structures and beyond.

Bang I, Choi HJ.

Mol Cells. 2015;38(2):105-11. doi: 10.14348/molcells.2015.2301. Epub 2014 Dec 24. Review.

9.

Structural features of the G-protein/GPCR interactions.

Moreira IS.

Biochim Biophys Acta. 2014 Jan;1840(1):16-33. doi: 10.1016/j.bbagen.2013.08.027. Epub 2013 Sep 7. Review.

PMID:
24016604
10.

Structural basis of function in heterotrimeric G proteins.

Oldham WM, Hamm HE.

Q Rev Biophys. 2006 May;39(2):117-66. Epub 2006 Aug 21. Review.

PMID:
16923326
11.

GPCR oligomers in pharmacology and signaling.

González-Maeso J.

Mol Brain. 2011 May 27;4(1):20. doi: 10.1186/1756-6606-4-20. Review.

12.
13.

X-ray structure breakthroughs in the GPCR transmembrane region.

Topiol S, Sabio M.

Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27. Review.

PMID:
19447219
14.

Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.

Huang J, Sun Y, Zhang JJ, Huang XY.

J Biol Chem. 2015 Jan 2;290(1):272-83. doi: 10.1074/jbc.M114.608661. Epub 2014 Nov 20.

15.

A constitutively active Gα subunit provides insights into the mechanism of G protein activation.

Singh G, Ramachandran S, Cerione RA.

Biochemistry. 2012 Apr 17;51(15):3232-40. doi: 10.1021/bi3001984. Epub 2012 Apr 5.

16.

Modulating G-protein-coupled receptors: from traditional pharmacology to allosterics.

Gilchrist A.

Trends Pharmacol Sci. 2007 Aug;28(8):431-7. Epub 2007 Jul 17. Review.

PMID:
17644194
17.

GPCR-Galpha fusion proteins: molecular analysis of receptor-G-protein coupling.

Seifert R, Wenzel-Seifert K, Kobilka BK.

Trends Pharmacol Sci. 1999 Sep;20(9):383-9.

PMID:
10462762
18.

Advances in methods to characterize ligand-induced ionic lock and rotamer toggle molecular switch in G protein-coupled receptors.

Xie XQ, Chowdhury A.

Methods Enzymol. 2013;520:153-74. doi: 10.1016/B978-0-12-391861-1.00007-1.

19.

A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models.

Sgourakis NG, Bagos PG, Papasaikas PK, Hamodrakas SJ.

BMC Bioinformatics. 2005 Apr 22;6:104.

20.

Variable G protein determinants of GPCR coupling selectivity.

Okashah N, Wan Q, Ghosh S, Sandhu M, Inoue A, Vaidehi N, Lambert NA.

Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12054-12059. doi: 10.1073/pnas.1905993116. Epub 2019 May 29.

Supplemental Content

Support Center