Format
Sort by
Items per page

Send to

Choose Destination

Links from Taxonomy

Items: 1 to 20 of 62

1.

Functional analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylases from tea plant (Camellia sinensis), involved in the B-ring hydroxylation of flavonoids.

Guo L, Gao L, Ma X, Guo F, Ruan H, Bao Y, Xia T, Wang Y.

Gene. 2019 Oct 30;717:144046. doi: 10.1016/j.gene.2019.144046. Epub 2019 Aug 18.

PMID:
31434006
2.

Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers.

Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, Dong F, Yang Z.

Food Chem. 2019 May 15;280:27-33. doi: 10.1016/j.foodchem.2018.12.035. Epub 2018 Dec 16.

PMID:
30642496
3.

Molecular Identification and Characterization of Hydroxycinnamoyl Transferase in Tea Plants (Camellia sinensis L.).

Sun CH, Yang CY, Tzen JTC.

Int J Mol Sci. 2018 Dec 7;19(12). pii: E3938. doi: 10.3390/ijms19123938.

4.

AtHB2, a class II HD-ZIP protein, negatively regulates the expression of CsANS, which encodes a key enzyme in Camellia sinensis catechin biosynthesis.

Zhang X, Jiang X, He Y, Li L, Xu P, Sun Z, Li J, Xu J, Xia T, Hong G.

Physiol Plant. 2019 Aug;166(4):936-945. doi: 10.1111/ppl.12851. Epub 2019 Feb 8.

PMID:
30357845
5.

An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.

Wang X, Zeng L, Liao Y, Zhou Y, Xu X, Dong F, Yang Z.

Food Chem. 2019 Jan 1;270:17-24. doi: 10.1016/j.foodchem.2018.07.056. Epub 2018 Jul 9.

PMID:
30174031
6.

Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant (Camellia sinensis).

Zhu J, Wang X, Guo L, Xu Q, Zhao S, Li F, Yan X, Liu S, Wei C.

Plant Cell Physiol. 2018 May 2. doi: 10.1093/pcp/pcy091. [Epub ahead of print]

7.

Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants.

Zhou Y, Peng Q, Zeng L, Tang J, Li J, Dong F, Yang Z.

Food Chem. 2018 Aug 30;258:352-358. doi: 10.1016/j.foodchem.2018.03.095. Epub 2018 Mar 21.

PMID:
29655745
8.

Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants.

Yue C, Cao H, Hao X, Zeng J, Qian W, Guo Y, Ye N, Yang Y, Wang X.

Plant Cell Rep. 2018 Mar;37(3):425-441. doi: 10.1007/s00299-017-2238-5. Epub 2017 Dec 6.

PMID:
29214380
9.

Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.

Wang P, Zhang L, Jiang X, Dai X, Xu L, Li T, Xing D, Li Y, Li M, Gao L, Xia T.

Planta. 2018 Jan;247(1):139-154. doi: 10.1007/s00425-017-2771-z. Epub 2017 Sep 8.

10.

Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis).

Li QS, Lin XM, Qiao RY, Zheng XQ, Lu JL, Ye JH, Liang YR.

Sci Rep. 2017 Aug 29;7(1):9847. doi: 10.1038/s41598-017-08587-6.

11.

Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis).

Zhou Y, Zeng L, Gui J, Liao Y, Li J, Tang J, Meng Q, Dong F, Yang Z.

Food Res Int. 2017 Jun;96:206-214. doi: 10.1016/j.foodres.2017.03.049. Epub 2017 Apr 5.

PMID:
28528101
12.

Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis).

Li W, Xiang F, Zhong M, Zhou L, Liu H, Li S, Wang X.

Sci Rep. 2017 May 10;7(1):1693. doi: 10.1038/s41598-017-01949-0.

13.

Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses.

Wang ML, Li QH, Xin HH, Chen X, Zhu XJ, Li XH.

PLoS One. 2017 Apr 28;12(4):e0175863. doi: 10.1371/journal.pone.0175863. eCollection 2017.

14.

Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing.

Zhou Y, Zeng L, Liu X, Gui J, Mei X, Fu X, Dong F, Tang J, Zhang L, Yang Z.

Food Chem. 2017 Sep 15;231:78-86. doi: 10.1016/j.foodchem.2017.03.122. Epub 2017 Mar 23.

PMID:
28450026
15.

Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress.

Qian W, Yue C, Wang Y, Cao H, Li N, Wang L, Hao X, Wang X, Xiao B, Yang Y.

Plant Cell Rep. 2016 Nov;35(11):2269-2283. Epub 2016 Aug 18.

PMID:
27538912
16.

Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.

Zeng L, Zhou Y, Gui J, Fu X, Mei X, Zhen Y, Ye T, Du B, Dong F, Watanabe N, Yang Z.

J Agric Food Chem. 2016 Jun 22;64(24):5011-9. doi: 10.1021/acs.jafc.6b01742. Epub 2016 Jun 13.

PMID:
27263428
17.

Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

Mei X, Chen Y, Zhang L, Fu X, Wei Q, Grierson D, Zhou Y, Huang Y, Dong F, Yang Z.

Sci Rep. 2016 Mar 29;6:23685. doi: 10.1038/srep23685.

18.

Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis).

Zhou TS, Zhou R, Yu YB, Xiao Y, Li DH, Xiao B, Yu O, Yang YJ.

Int J Mol Sci. 2016 Feb 22;17(2):261. doi: 10.3390/ijms17020261.

19.

Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength.

Fu X, Chen Y, Mei X, Katsuno T, Kobayashi E, Dong F, Watanabe N, Yang Z.

Sci Rep. 2015 Nov 16;5:16858. doi: 10.1038/srep16858.

20.

Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis.

Wei K, Wang L, Zhang C, Wu L, Li H, Zhang F, Cheng H.

PLoS One. 2015 Sep 14;10(9):e0137925. doi: 10.1371/journal.pone.0137925. eCollection 2015.

Supplemental Content

Support Center