Interaction of CYP3A4 with Rationally Designed Ritonavir Analogues: Impact of Steric Constraints Imposed on the Heme-Ligating Group and the End-Pyridine Attachment

Int J Mol Sci. 2022 Jun 30;23(13):7291. doi: 10.3390/ijms23137291.

Abstract

Controlled inhibition of drug-metabolizing cytochrome P450 3A4 (CYP3A4) is utilized to boost bioavailability of anti-viral and immunosuppressant pharmaceuticals. We investigate structure-activity relationships (SARs) in analogues of ritonavir, a potent CYP3A4 inhibitor marketed as pharmacoenhancer, to determine structural elements required for potent inhibition and whether the inhibitory potency can be further improved via a rational structure-based design. This study investigated eight (series VI) inhibitors differing in head- and end-moieties and their respective linkers. SAR analysis revealed the multifactorial regulation of inhibitory strength, with steric constraints imposed on the tethered heme-ligating moiety being a key factor. Minimization of these constraints by changing the linkers' length/flexibility and N-heteroatom position strengthened heme coordination and markedly improved binding and/or inhibitory strength. Impact of the end-pyridine attachment was not uniform due to influence of other determinants controlling the ligand-binding mode. This interplay between pharmacophoric determinants and the end-group enlargement can be used for further inhibitor optimization.

Keywords: CYP3A4; crystal structure; inhibitor design; ritonavir analogues; structure–activity relationship.

MeSH terms

  • Cytochrome P-450 CYP3A Inhibitors / chemistry
  • Cytochrome P-450 CYP3A* / metabolism
  • Heme
  • Pyridines
  • Ritonavir* / chemistry
  • Ritonavir* / pharmacology

Substances

  • Cytochrome P-450 CYP3A Inhibitors
  • Pyridines
  • Heme
  • Cytochrome P-450 CYP3A
  • Ritonavir