DNMT1 Y495C mutation interferes with maintenance methylation of imprinting control regions

Int J Biochem Cell Biol. 2024 Apr:169:106535. doi: 10.1016/j.biocel.2024.106535. Epub 2024 Jan 26.

Abstract

Hereditary Sensory and Autonomic Neuropathy Type 1E (HSAN1E) is a rare autosomal dominant neurological disorder due to missense mutations in DNA methyltransferase 1 (DNMT1). To investigate the nature of the dominant effect, we compared methylomes of transgenic R1wtDnmt1 and R1Dnmt1Y495C mouse embryonic stem cells (mESCs) overexpressing WT and the mutant mouse proteins respectively, with the R1 (wild-type) cells. In case of R1Dnmt1Y495C, 15 out of the 20 imprinting control regions were hypomethylated with transcript level dysregulation of multiple imprinted genes in ESCs and neurons. Non-imprinted regions, minor satellites, major satellites, LINE1 and IAP repeats were unaffected. These data mirror the specific imprinting defects associated with transient removal of DNMT1 in mESCs, deletion of the maternal-effect DNMT1o variant in preimplantation mouse embryos, and in part, reprogramming to naïve human iPSCs. This is the first DNMT1 mutation demonstrated to specifically affect Imprinting Control Regions (ICRs), and reinforces the differences in maintenance methylation of ICRs over non-imprinted regions. Consistent with nervous system abnormalities in the HSAN1E disorder and involvement of imprinted genes in normal development and neurogenesis, R1Dnmt1Y495C cells showed dysregulated pluripotency and neuron marker genes, and yielded more slender, shorter, and extensively branched neurons. We speculate that R1Dnmt1Y495C cells produce predominantly dimers containing mutant proteins, leading to a gradual and specific loss of ICR methylation during early human development.

Keywords: DNMT1 Y495C mutation; HSAN1E disorder; Imprinting control region; Mouse embryonic stem cell lines; Neuronal differentiation.

MeSH terms

  • Animals
  • DNA (Cytosine-5-)-Methyltransferase 1* / genetics
  • DNA (Cytosine-5-)-Methyltransferase 1* / metabolism
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA Methylation*
  • Genomic Imprinting*
  • Humans
  • Mice
  • Mouse Embryonic Stem Cells / metabolism
  • Mutation

Substances

  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • Dnmt1 protein, mouse