A+T rich interaction domain protein 3a (Arid3a) impairs Mertk-mediated efferocytosis in cholestasis

J Hepatol. 2023 Dec;79(6):1478-1490. doi: 10.1016/j.jhep.2023.08.016. Epub 2023 Sep 1.

Abstract

Background & aims: Macrophages are key elements in the pathogenesis of cholestatic liver diseases. Arid3a plays a prominent role in the biologic properties of hematopoietic stem cells, B lymphocytes and tumor cells, but its ability to modulate macrophage function during cholestasis remains unknown.

Methods: Gene and protein expression and cellular localization were assessed by q-PCR, immunohistochemistry, immunofluorescence staining and flow cytometry. We generated myeloid-specific Arid3a knockout mice and established three cholestatic murine models. The transcriptome was analyzed by RNA-seq. A specific inhibitor of the Mertk receptor was used in vitro and in vivo. Promoter activity was determined by chromatin immunoprecipitation-seq against Arid3a and a luciferase reporter assay.

Results: In cholestatic murine models, myeloid-specific deletion of Arid3a alleviated cholestatic liver injury (accompanied by decreased accumulation of macrophages). Arid3a-deficient macrophages manifested a more reparative phenotype, which was eliminated by in vitro treatment with UNC2025, a specific inhibitor of the efferocytosis receptor Mertk. Efferocytosis of apoptotic cholangiocytes was enhanced in Arid3a-deficient macrophages via upregulation of Mertk. Arid3a negatively regulated Mertk transcription by directly binding to its promoter. Targeting Mertk in vivo effectively reversed the protective phenotype of Arid3a deficiency in macrophages. Arid3a was upregulated in hepatic macrophages and circulating monocytes in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Mertk was correspondingly upregulated and negatively correlated with Arid3a expression in PBC and PSC. Mertk+ cells were located in close proximity to cholangiocytes, while Arid3a+ cells were scattered among immune cells with greater spatial distances to hyperplastic cholangiocytes in PBC and PSC.

Conclusions: Arid3a promotes cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes by macrophages during cholestasis. The Arid3a-Mertk axis is a promising novel therapeutic target for cholestatic liver diseases.

Impact and implications: Macrophages play an important role in the pathogenesis of cholestatic liver diseases. This study reveals that macrophages with Arid3a upregulation manifest a pro-inflammatory phenotype and promote cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes during cholestasis. Although we now offer a new paradigm to explain how efferocytosis is regulated in a myeloid cell autonomous manner, the regulatory effects of Arid3a on chronic liver diseases remain to be further elucidated.

Keywords: ARID3A; MERTK; cholestasis; efferocytosis; macrophages.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cholestasis* / metabolism
  • DNA-Binding Proteins* / genetics
  • DNA-Binding Proteins* / metabolism
  • Liver Diseases* / metabolism
  • Macrophages / metabolism
  • Mice
  • Mice, Knockout
  • Phagocytosis / physiology
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism
  • c-Mer Tyrosine Kinase* / genetics
  • c-Mer Tyrosine Kinase* / metabolism

Substances

  • c-Mer Tyrosine Kinase
  • Mertk protein, mouse
  • Arid3a protein, mouse
  • DNA-Binding Proteins
  • Transcription Factors