The value of RPS15 and MRPS27 in ischemic stroke

Medicine (Baltimore). 2023 Aug 18;102(33):e34706. doi: 10.1097/MD.0000000000034706.

Abstract

Ischemic stroke is caused by insufficient blood supply to the brain. It has acute onset, often disturbance of consciousness, and high mortality and disability rate. However, relationship between ribosomal proteins (RP)-S15 and mitochondrial ribosomal proteins (MRP)-S27 and ischemic stroke remains unclear. The ischemic stroke datasets GSE22255, GSE16561, and GSE199435 were downloaded from gene expression omnibus generated by GPL6883, GPL11154, and GPL570. Differentially expressed genes (DEGs) were screened, and the construction and analysis of protein-protein interaction network, functional enrichment analysis and gene set enrichment analysis were performed. The gene expression heat map was drawn. Comparative toxicogenomics database analysis were performed to find the disease most related to core gene. TargetScan screened miRNAs that regulated central DEGs. Five hundred DEGs were identified. According to gene ontology analysis, they were mainly enriched in leukocyte activation, myoid cell activation involved in immune response, cell membrane, mitochondria, secretory vesicles, catalytic activity, enzyme binding, ribonucleic acid binding, splicing. Gene set enrichment analysis showed that the enrichment items are similar to the enrichment items of differentially expressed genes. And 20 core genes were obtained. Comparative toxicogenomics database analysis showed that 6 genes (RPS15, RPS2, RPS3, MRPS27, POLR2A, MRPS26) were found to be associated with chemical and drug-induced liver injury, necrosis, delayed prenatal exposure, nephropathy, hepatomegaly and tumor. RPS15 and MRPS27 are the core genes of ischemic stroke and play an important role in ischemic stroke.

MeSH terms

  • Brain
  • Chromosome Mapping
  • Female
  • Humans
  • Ischemic Stroke*
  • MicroRNAs*
  • Pregnancy
  • Ribosomal Proteins / genetics

Substances

  • MicroRNAs
  • Ribosomal Proteins
  • MRPS27 protein, human
  • RPS15A protein, human