SPSB1-mediated inhibition of TGF-β receptor-II impairs myogenesis in inflammation

J Cachexia Sarcopenia Muscle. 2023 Aug;14(4):1721-1736. doi: 10.1002/jcsm.13252. Epub 2023 May 20.

Abstract

Background: Sepsis-induced intensive care unit-acquired weakness (ICUAW) features profound muscle atrophy and attenuated muscle regeneration related to malfunctioning satellite cells. Transforming growth factor beta (TGF-β) is involved in both processes. We uncovered an increased expression of the TGF-β receptor II (TβRII)-inhibitor SPRY domain-containing and SOCS-box protein 1 (SPSB1) in skeletal muscle of septic mice. We hypothesized that SPSB1-mediated inhibition of TβRII signalling impairs myogenic differentiation in response to inflammation.

Methods: We performed gene expression analyses in skeletal muscle of cecal ligation and puncture- (CLP) and sham-operated mice, as well as vastus lateralis of critically ill and control patients. Pro-inflammatory cytokines and specific pathway inhibitors were used to quantitate Spsb1 expression in myocytes. Retroviral expression plasmids were used to investigate the effects of SPSB1 on TGF-β/TβRII signalling and myogenesis in primary and immortalized myoblasts and differentiated myotubes. For mechanistical analyses we used coimmunoprecipitation, ubiquitination, protein half-life, and protein synthesis assays. Differentiation and fusion indices were determined by immunocytochemistry, and differentiation factors were quantified by qRT-PCR and Western blot analyses.

Results: SPSB1 expression was increased in skeletal muscle of ICUAW patients and septic mice. Tumour necrosis factor (TNF), interleukin-1β (IL-1β), and IL-6 increased the Spsb1 expression in C2C12 myotubes. TNF- and IL-1β-induced Spsb1 expression was mediated by NF-κB, whereas IL-6 increased the Spsb1 expression via the glycoprotein 130/JAK2/STAT3 pathway. All cytokines reduced myogenic differentiation. SPSB1 avidly interacted with TβRII, resulting in TβRII ubiquitination and destabilization. SPSB1 impaired TβRII-Akt-Myogenin signalling and diminished protein synthesis in myocytes. Overexpression of SPSB1 decreased the expression of early (Myog, Mymk, Mymx) and late (Myh1, 3, 7) differentiation-markers. As a result, myoblast fusion and myogenic differentiation were impaired. These effects were mediated by the SPRY- and SOCS-box domains of SPSB1. Co-expression of SPSB1 with Akt or Myogenin reversed the inhibitory effects of SPSB1 on protein synthesis and myogenic differentiation. Downregulation of Spsb1 by AAV9-mediated shRNA attenuated muscle weight loss and atrophy gene expression in skeletal muscle of septic mice.

Conclusions: Inflammatory cytokines via their respective signalling pathways cause an increase in SPSB1 expression in myocytes and attenuate myogenic differentiation. SPSB1-mediated inhibition of TβRII-Akt-Myogenin signalling and protein synthesis contributes to a disturbed myocyte homeostasis and myogenic differentiation that occurs during inflammation.

Keywords: Critical illness myopathy; Inflammation-induced muscle atrophy; Myogenic differentiation; SPSB1; Sepsis; TGFβ receptor II.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytokines
  • Inflammation
  • Interleukin-6*
  • Mice
  • Muscle Development
  • Muscle, Skeletal / metabolism
  • Myogenin / genetics
  • Proto-Oncogene Proteins c-akt*
  • Transforming Growth Factor beta / metabolism
  • Tumor Necrosis Factor-alpha

Substances

  • Cytokines
  • Interleukin-6
  • Myogenin
  • Proto-Oncogene Proteins c-akt
  • Transforming Growth Factor beta
  • Tumor Necrosis Factor-alpha
  • Tgfbr2 protein, mouse
  • SSB-1 protein, mouse