Role for Granulocyte Colony-Stimulating Factor in Neutrophilic Extramedullary Myelopoiesis in a Murine Model of Systemic Juvenile Idiopathic Arthritis

Arthritis Rheumatol. 2022 Jul;74(7):1257-1270. doi: 10.1002/art.42104. Epub 2022 May 31.

Abstract

Objective: Systemic juvenile idiopathic arthritis (JIA) is a systemic inflammatory disease with childhood onset. Systemic JIA is associated with neutrophilia, including immature granulocytes, potentially driven by the growth factor granulocyte-colony stimulating factor (G-CSF). This study was undertaken to investigate the role of G-CSF in the pathology of systemic JIA.

Methods: Injection of Freund's complete adjuvant (CFA) in BALB/c mice induces mild inflammation and neutrophilia in wild-type (WT) mice and a more pronounced disease, reminiscent to that of JIA patients, in interferon-γ-knockout (IFNγ-KO) mice. Extramedullary myelopoiesis was studied in CFA-immunized mice by single-cell RNA sequencing, and the effect of G-CSF receptor (G-CSFR) blockage on neutrophil development and systemic JIA pathology was evaluated. Additionally, plasma G-CSF levels were measured in patients.

Results: Both in systemic JIA patients and in a corresponding mouse model, plasma G-CSF levels were increased. In the mouse model, we demonstrated that G-CSF is responsible for the observed neutrophilia and extramedullary myelopoiesis and the induction of immature neutrophils and myeloid-derived suppressor-like cells. Administration of a G-CSFR antagonizing antibody blocked the maturation and differentiation of neutrophils in CFA-immunized mice. In IFNγ-KO mice, treatment was associated with almost complete inhibition of arthritis due to reduced neutrophilia and osteoclast formation. Disease symptoms were ameliorated, but slight increases in interleukin-6 (IL-6), tumor necrosis factor, and IL-17 were detected upon G-CSFR inhibition in the IFNγ-KO mice, and were associated with mild increases in weight loss, tail damage, and immature red blood cells.

Conclusion: We describe the role of G-CSF in a mouse model of systemic JIA and suggest an important role for G-CSF-induced myelopoiesis and neutrophilia in regulating the development of arthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthritis, Juvenile* / immunology
  • Disease Models, Animal
  • Granulocyte Colony-Stimulating Factor* / immunology
  • Interferon-gamma / genetics
  • Mice
  • Mice, Inbred BALB C
  • Myelopoiesis*
  • Neutrophils / metabolism

Substances

  • Granulocyte Colony-Stimulating Factor
  • Interferon-gamma