A novel Lgi1 mutation causes white matter abnormalities and impairs motor coordination in mice

FASEB J. 2022 Mar;36(3):e22212. doi: 10.1096/fj.202101652R.

Abstract

Leucine-rich glioma-inactivated protein 1 (LGI1) is known to play a key role in autosomal dominant lateral temporal lobe epilepsy (ADLTE). The ADLTE is an inherited disease characterized by focal seizures with distinctive auditory or aphasic symptoms. A large number of mutations on the Lgi1 gene have been reported and are believed to be the genetic cause for ADLTE. We identified a novel missense mutation, c.152A>G (p.Asp51Gly), on Lgi1 from a Chinese ADLTE patient who manifests locomotor imbalance and white matter reduction. However, it remains unknown how mutant LGI1 causes white matter abnormalities at molecular and cellular levels. Here, we generated a knock-in mouse bearing this Lgi1 mutation. We found that Lgi1D51G/D51G mice exhibited impaired defective white matter and motor coordination. We observed that Lgi1D51G/D51G mice displayed a reduced number of mature oligodendrocytes (OLs) and deficient OL differentiation in the white matter. However, the population of oligodendrocyte precursor cells was not affected in Lgi1D51G/D51G mice. Mechanistically, we showed that the Lgi1D51G mutation resulted in altered mTOR signaling and led to decreased levels of Sox10. Given that Sox10 is a key transcriptional factor to control OL differentiation, our results strongly suggest that the Lgi1D51G mutation may cause white matter abnormalities via inhibiting Sox10-dependent OL differentiation and myelination in the central nervous system.

Keywords: LGI1; Sox10; myelination; oligodendrocyte differentiation; white matter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Movement*
  • Mutation, Missense
  • Postural Balance / genetics
  • White Matter / metabolism*
  • White Matter / pathology

Substances

  • Intracellular Signaling Peptides and Proteins
  • Lgi1 protein, mouse