Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4

JCI Insight. 2021 Jul 22;6(14):e148147. doi: 10.1172/jci.insight.148147.

Abstract

The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA-conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell-specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, Sftpc-cre;RhoAfl/fl mice showed a significant reduction in Tgf-β1 levels in BALF and lung tissues, and administration of recombinant Tgf-β1 to the mice rescued Tgf-β1 and alleviated the increased allergic airway inflammation observed in Sftpc-cre;RhoAfl/fl mice. Using RNA sequencing technology, we identified Slc26a4 (pendrin), a transmembrane anion exchange, as the most upregulated gene in RhoA-deficient AT2 cells. The upregulation of SLC26A4 was further confirmed in AT2 cells of asthmatic patients and mouse models and in human airway epithelial cells expressing dominant-negative RHOA (RHOA-N19). SLA26A4 was also elevated in serum from asthmatic patients and negatively associated with the percentage of forced expiratory volume in 1 second (FEV1%). Furthermore, SLC26A4 inhibition promoted epithelial TGF-β1 release and attenuated allergic airway inflammation. Our study reveals a RhoA/SLC26A4 axis in AT2 cells that functions as a protective mechanism against allergic airway inflammation.

Keywords: Allergy; Asthma; Immunology; Inflammation; Th2 response.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alveolar Epithelial Cells / immunology*
  • Alveolar Epithelial Cells / metabolism
  • Animals
  • Asthma / drug therapy
  • Asthma / immunology*
  • Asthma / pathology
  • Bronchoalveolar Lavage Fluid / immunology
  • Disease Models, Animal
  • Humans
  • Lung / cytology
  • Lung / immunology
  • Lung / pathology
  • Mice
  • Ovalbumin / administration & dosage
  • Ovalbumin / immunology
  • Recombinant Proteins / administration & dosage
  • Sulfate Transporters / metabolism*
  • Symptom Flare Up
  • Transforming Growth Factor beta1 / administration & dosage
  • Transforming Growth Factor beta1 / analysis
  • Transforming Growth Factor beta1 / metabolism
  • rhoA GTP-Binding Protein / deficiency*
  • rhoA GTP-Binding Protein / genetics

Substances

  • Recombinant Proteins
  • Slc26a4 protein, mouse
  • Sulfate Transporters
  • Tgfb1 protein, mouse
  • Transforming Growth Factor beta1
  • Ovalbumin
  • RhoA protein, mouse
  • rhoA GTP-Binding Protein