Spinal caspase-6 regulates AMPA receptor trafficking and dendritic spine plasticity through netrin-1 in postoperative pain after orthopedic surgery for tibial fracture in mice

Pain. 2021 Jan;162(1):124-134. doi: 10.1097/j.pain.0000000000002021.

Abstract

Chronic postoperative pain hinders functional recovery after bone fracture and orthopedic surgery. Recently reported evidence indicates that caspase-6 is important in excitatory synaptic plasticity and pathological pain. Meanwhile, netrin-1 controls postsynaptic recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and synaptogenesis. The present work aimed to examine whether caspase-6 and netrin-1 contribute to fracture-induced postoperative allodynia. A mouse model of tibial fracture by intramedullary pinning was generated for inducing postoperative pain. Then, paw withdrawal threshold, spinal caspase-6 activity, netrin-1 secretion, AMPAR trafficking, and spine morphology were examined. Caspase-6 inhibition and netrin-1 knockdown by shRNA were performed to elucidate the pathogenetic mechanism of allodynia and its prevention. Whole-cell patch-clamp recording was performed to assess caspase-6's function in spinal AMPAR-induced current. Tibial fractures after orthopedic operation initiated persistent postsurgical mechanical and cold allodynia, accompanied by increased spinal active caspase-6, netrin-1 release, GluA1-containing AMPAR trafficking, spine density, and AMPAR-induced current in dorsal horn neurons. Caspase-6 inhibition reduced fracture-associated allodynia, netrin-1 secretion, and GluA1 trafficking. Netrin-1 deficiency impaired fracture-caused allodynia, postsynaptic GluA1 recruitment, and spine plasticity. The specific GluA2-lacking AMPAR antagonist NASPM also dose dependently prevented postoperative pain. The reduction of fracture-mediated postoperative excitatory synaptic AMPAR current in the dorsal horn by caspase-6 inhibition was compromised by recombinant netrin-1. Exogenous caspase-6 induced pain hypersensitivity, reversing by netrin-1 knockdown or coapplication of NASPM. Thus, spinal caspase-6 modulation of GluA1-containing AMPAR activation and spine morphology through netrin-1 secretion is important in the development of fracture-related postsurgical pain in the mouse.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caspase 6
  • Dendritic Spines
  • Mice
  • Netrin-1
  • Orthopedic Procedures*
  • Pain, Postoperative
  • Receptors, AMPA
  • Tibial Fractures* / surgery

Substances

  • Ntn1 protein, mouse
  • Receptors, AMPA
  • Netrin-1
  • Casp6 protein, mouse
  • Caspase 6