Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors

FASEB J. 2020 Feb;34(2):2677-2690. doi: 10.1096/fj.201902535R. Epub 2019 Dec 30.

Abstract

Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.

Keywords: cAMP; photoreceptor; phototransduction; protein phosphorylation; vision.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dark Adaptation / physiology*
  • G-Protein-Coupled Receptor Kinase 1 / genetics
  • G-Protein-Coupled Receptor Kinase 1 / metabolism*
  • Kinetics
  • Mice, Transgenic
  • Phosphorylation
  • Retina / metabolism
  • Retinal Cone Photoreceptor Cells / metabolism*
  • Retinal Rod Photoreceptor Cells / metabolism
  • Rhodopsin / metabolism
  • Serine / metabolism*

Substances

  • Serine
  • Rhodopsin
  • G-Protein-Coupled Receptor Kinase 1
  • Grk1 protein, mouse