Multiprotein Complex With TRPC (Transient Receptor Potential-Canonical) Channel, PDE1C (Phosphodiesterase 1C), and A2R (Adenosine A2 Receptor) Plays a Critical Role in Regulating Cardiomyocyte cAMP and Survival

Circulation. 2018 Oct 30;138(18):1988-2002. doi: 10.1161/CIRCULATIONAHA.118.034189.

Abstract

Background: cAMP plays a critical role in regulating cardiomyocyte survival. Various cAMP signaling pathways behave distinctly or in opposition. We have previously reported that activation of cAMP hydrolysis by cyclic nucleotide phosphodiesterase 1C (PDE1C) promotes cardiomyocytes death/apoptosis, yet the underlying molecular mechanism remains unknown. In this study, we aimed to identify the specific cAMP signaling pathway modulated by PDE1C and determine the mechanism by which Ca2+/calmodulin-stimulated PDE1C is activated.

Methods: To study cardiomyocyte death/apoptosis, we used both isolated mouse adult cardiomyocytes in vitro and doxorubicin-induced cardiotoxicity in vivo. We used a variety of pharmacological activators and inhibitors as well as genetically engineered molecular tools to manipulate the expression and activity of proteins of interest.

Results: We found that the protective effect of PDE1C inhibition/deficiency on Ang II or doxorubicin-induced cardiomyocyte death/apoptosis is dependent on cAMP-generating adenosine A2 receptors (A2Rs), suggesting that PDE1C's cAMP-hydrolyzing activity selectively modulates A2R-cAMP signaling in cardiomyocytes. In addition, we found that the effects of PDE1C activation on Ang II-mediated cAMP reduction and cardiomyocyte death are dependent on transient receptor potential-canonical (TRPC) channels, in particular TRPC3. We also observed synergistic protective effects on cardiomyocyte survival from the combination of A2R stimulation together with PDE1 or TRPC inhibition. Coimmunostaining and coimmunoprecipitation studies showed that PDE1C is localized in proximity with A2R and TRPC3 in the plasma membrane and perhaps T tubules. It is important to note that we found that doxorubicin-induced cardiac toxicity and dysfunction in mice are attenuated by the PDE1 inhibitor IC86340 or in PDE1C knockout mice, and this protective effect is significantly diminished by A2R antagonism.

Conclusions: We have characterized a novel multiprotein complex comprised of A2R, PDE1C, and TRPC3, in which PDE1C is activated by TRPC3-derived Ca2+, thereby antagonizing A2R-cAMP signaling and promoting cardiomyocyte death/apoptosis. Targeting these molecules individually or in combination may represent a compelling therapeutic strategy for potentiating cardiomyocyte survival.

Keywords: adenosine signaling; cAMP; cardiomyocyte death; cardiotoxicity; phosphodiesterase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine A2 Receptor Antagonists / pharmacology
  • Angiotensin II / toxicity
  • Animals
  • Apoptosis / drug effects
  • Calcium Signaling / drug effects
  • Cell Survival / drug effects
  • Cyclic AMP / metabolism*
  • Cyclic Nucleotide Phosphodiesterases, Type 1 / antagonists & inhibitors
  • Cyclic Nucleotide Phosphodiesterases, Type 1 / metabolism*
  • Doxorubicin / pharmacology
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • RNA Interference
  • RNA, Small Interfering / metabolism
  • Receptors, Adenosine A2 / chemistry
  • Receptors, Adenosine A2 / metabolism*
  • TRPC Cation Channels / antagonists & inhibitors
  • TRPC Cation Channels / genetics
  • TRPC Cation Channels / metabolism*

Substances

  • Adenosine A2 Receptor Antagonists
  • RNA, Small Interfering
  • Receptors, Adenosine A2
  • TRPC Cation Channels
  • TRPC3 cation channel
  • Angiotensin II
  • Doxorubicin
  • Cyclic AMP
  • Cyclic Nucleotide Phosphodiesterases, Type 1
  • Pde1C protein, mouse