Gremlin2 Regulates the Differentiation and Function of Cardiac Progenitor Cells via the Notch Signaling Pathway

Cell Physiol Biochem. 2018;47(2):579-589. doi: 10.1159/000490012. Epub 2018 May 22.

Abstract

Background/aims: The transplantation of cardiac progenitor cells (CPCs) improves neovascularization and left ventricular function after myocardial infarction (MI). The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. The present study examined the role of Grem2 in CPC differentiation and cardiac repair.

Methods: To determine the role of Grem 2 during CPC differentiation, c-Kit+ CPCs were cultured in differentiation medium for different times, and Grem2, Notch1 and Jagged1 expression was determined by RT-PCR and western blotting. Short hairpin RNA was used to silence Grem2 expression, and the expression of cardiomyocyte surface markers was assessed by RT-PCR and immunofluorescence staining. In vivo experiments were performed in a mouse model of left anterior descending coronary artery ligation-induced MI.

Results: CPC differentiation upregulated Grem2 expression and activated the Notch1 pathway. Grem2 knockdown inhibited cardiomyocyte differentiation, and this effect was similar to that of Notch1 pathway inhibition in vitro. Jagged1 overexpression rescued the effects of Grem2 silencing. In vivo, Grem2 silencing abolished the protective effects of CPC injection on cardiac fibrosis and function.

Conclusions: Grem2 regulates CPC cardiac differentiation by modulating Notch1 signaling. Grem2 enhances the protective effect of CPCs on heart function in a mouse model of MI, suggesting its potential as the rapeutic protein for cardiac repair.

Keywords: CPC differentiation; Cardiac Function; Cardiac progenitor cells (CPCs); Myocardial infarction.

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cells, Cultured
  • Cytokines
  • GATA4 Transcription Factor / genetics
  • GATA4 Transcription Factor / metabolism
  • Homeobox Protein Nkx-2.5 / genetics
  • Homeobox Protein Nkx-2.5 / metabolism
  • Jagged-1 Protein / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardium / cytology
  • Myocardium / metabolism
  • Myocardium / pathology
  • Proteins / antagonists & inhibitors
  • Proteins / genetics
  • Proteins / metabolism*
  • RNA Interference
  • RNA, Small Interfering / metabolism
  • Receptors, Notch / metabolism*
  • Signal Transduction
  • Smad Proteins / metabolism
  • Stem Cells / cytology
  • Stem Cells / metabolism
  • Troponin I / genetics
  • Troponin I / metabolism
  • Up-Regulation

Substances

  • Cytokines
  • GATA4 Transcription Factor
  • Gata4 protein, mouse
  • Grem2 protein, mouse
  • Homeobox Protein Nkx-2.5
  • Jagged-1 Protein
  • Nkx2-5 protein, mouse
  • Proteins
  • RNA, Small Interfering
  • Receptors, Notch
  • Smad Proteins
  • Troponin I