Gender differences in murine pulmonary responses elicited by cellulose nanocrystals

Part Fibre Toxicol. 2016 Jun 8;13(1):28. doi: 10.1186/s12989-016-0140-x.

Abstract

Background: Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment.

Methods: The present study was undertaken to investigate the pulmonary outcomes induced by repeated exposure to respirable CNC. C57BL/6 female and male mice were exposed by pharyngeal aspiration to CNC (40 μg/mouse) 2 times a week for 3 weeks. Several biochemical endpoints and pathophysiological outcomes along with gene expression changes were evaluated and compared in the lungs of male and female mice.

Results: Exposure to respirable CNC caused pulmonary inflammation and damage, induced oxidative stress, elevated TGF-β and collagen levels in lung, and impaired pulmonary functions. Notably, these effects were markedly more pronounced in females compared to male mice. Moreover, sex differences in responses to pulmonary exposure to CNC were also detected at the level of global mRNA expression as well as in inflammatory cytokine/chemokine activity.

Conclusions: Overall, our results indicate that there are considerable differences in responses to respirable CNC based on gender with a higher pulmonary toxicity observed in female mice.

Keywords: Cellulose; Gender differences; Inflammation; Oxidative stress; Pulmonary toxicity; mRNA expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / chemistry
  • Air Pollutants / toxicity*
  • Animals
  • Biomarkers / metabolism
  • Cellulose / chemistry
  • Cellulose / toxicity*
  • Cellulose / ultrastructure
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation / drug effects
  • Inhalation Exposure / adverse effects*
  • Lung / drug effects*
  • Lung / immunology
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Mice, Inbred C57BL
  • Microscopy, Electron, Scanning
  • Nanoparticles / chemistry
  • Nanoparticles / toxicity*
  • Nanoparticles / ultrastructure
  • Particle Size
  • Pulmonary Disease, Chronic Obstructive / chemically induced*
  • Pulmonary Disease, Chronic Obstructive / immunology
  • Pulmonary Disease, Chronic Obstructive / metabolism
  • Pulmonary Disease, Chronic Obstructive / pathology
  • RNA, Messenger / metabolism
  • Respiratory Mucosa / drug effects*
  • Respiratory Mucosa / immunology
  • Respiratory Mucosa / metabolism
  • Respiratory Mucosa / pathology
  • Sex Characteristics
  • Specific Pathogen-Free Organisms
  • Surface Properties

Substances

  • Air Pollutants
  • Biomarkers
  • RNA, Messenger
  • Cellulose