An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):485-94. doi: 10.1109/TNSRE.2015.2424371. Epub 2015 May 6.

Abstract

Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Electromyography / methods*
  • Feedback, Physiological / physiology
  • Female
  • Hand / physiology*
  • Hand Strength*
  • Humans
  • Male
  • Middle Aged
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / physiology*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Young Adult