Development of an OP9 derived cell line as a robust model to rapidly study adipocyte differentiation

PLoS One. 2014 Nov 19;9(11):e112123. doi: 10.1371/journal.pone.0112123. eCollection 2014.

Abstract

One hallmark of obesity is adipocyte hypertrophy and hyperplasia. To gain novel insights into adipose biology and therapeutics, there is a pressing need for a robust, rapid, and informative cell model of adipocyte differentiation for potential RNAi and drug screens. Current models are prohibitive for drug and RNAi screens due to a slow differentiation time course and resistance to transfection. We asked if we could create a rapid, robust model of adipogenesis to potentially enable rapid functional and obesity therapeutic screens. We generated the clonal population OP9-K, which differentiates rapidly and reproducibly, and displays classic adipocyte morphology: rounded cell shape, lipid accumulation, and coalescence of lipids into a large droplet. We further validate the OP9-K cells as an adipocyte model system by microarray analysis of the differentiating transcriptome. OP9-K differentiates via known adipogenic pathways, involving the transcriptional activation and repression of common adipose markers Plin1, Gata2, C/Ebpα and C/Ebpβ and biological pathways, such as lipid metabolism, PPARγ signaling, and osteogenesis. We implemented a method to quantify lipid accumulation using automated microscopy and tested the ability of our model to detect alterations in lipid accumulation by reducing levels of the known master adipogenic regulator Pparγ. We further utilized our model to query the effects of a novel obesity therapeutic target, the transcription factor SPI1. We determine that reduction in levels of Spi1 leads to an increase in lipid accumulation. We demonstrate rapid, robust differentiation and efficient transfectability of the OP9-K cell model of adipogenesis. Together with our microscopy based lipid accumulation assay, adipogenesis assays can be achieved in just four days' time. The results of this study can contribute to the development of rapid screens with the potential to deepen our understanding of adipose biology and efficiently test obesity therapeutics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipocytes / cytology*
  • Adipogenesis* / drug effects
  • Animals
  • Cell Line
  • Lipid Metabolism / drug effects
  • Mice
  • Models, Biological*
  • Proto-Oncogene Proteins / metabolism
  • Trans-Activators / metabolism

Substances

  • Proto-Oncogene Proteins
  • Trans-Activators
  • proto-oncogene protein Spi-1

Grants and funding

This material is based upon work supported by the U.S. Department of Agriculture, under agreement No. 58-1950-0-014. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.