Wnt signaling pathway in non-small cell lung cancer

J Natl Cancer Inst. 2014 Jan;106(1):djt356. doi: 10.1093/jnci/djt356. Epub 2013 Dec 5.

Abstract

Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associated with poor prognosis. Conversely, noncanonical Wnt-7a suppresses NSCLC development and is often downregulated. Although β-catenin is often expressed in NSCLCs, it was paradoxically associated with improved prognosis in some series, possibly because of E-cadherin interactions. Downregulation of Wnt inhibitors (eg, by hypermethylation) is common in NSCLC tumor cell lines and resected samples; may be associated with high stage, dedifferentiation, and poor prognosis; and has been reported for AXIN, sFRPs 1-5, WIF-1, Dkk-1, Dkk-3, HDPR1, RUNX3, APC, CDX2, DACT2, TMEM88, Chibby, NKD1, EMX2, ING4, and miR-487b. AXIN is also destabilized by tankyrases, and GSK3β may be inactivated through phosphorylation by EGFR. Preclinically, restoration of Wnt inhibitor function is associated with reduced Wnt signaling, decreased cell proliferation, and increased apoptosis. Wnt signaling may also augment resistance to cisplatin, docetaxel, and radiotherapy, and Wnt inhibitors may restore sensitivity. Overall, available data indicate that Wnt signaling substantially impacts NSCLC tumorigenesis, prognosis, and resistance to therapy, with loss of Wnt signaling inhibitors by promoter hypermethylation or other mechanisms appearing to be particularly important. Wnt pathway antagonists warrant exploration clinically in NSCLC. Agents blocking selected specific β-catenin interactions and approaches to increase expression of downregulated Wnt inhibitors may be of particular interest.

Publication types

  • Review

MeSH terms

  • Apoptosis
  • Cadherins / metabolism
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Cell Line, Tumor
  • Cell Proliferation
  • DNA Methylation
  • Down-Regulation
  • Drug Resistance, Neoplasm*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology*
  • Neoplasm Staging
  • Prognosis
  • Wnt Proteins / metabolism
  • Wnt Signaling Pathway* / drug effects
  • beta Catenin / metabolism

Substances

  • Cadherins
  • WNT7A protein, human
  • Wnt Proteins
  • beta Catenin