Loss of retinal cadherin facilitates mammary tumor progression and metastasis

Cancer Res. 2009 Jun 15;69(12):5030-8. doi: 10.1158/0008-5472.CAN-08-4007. Epub 2009 Jun 2.

Abstract

The mammary epithelium is thought to be stabilized by cell-cell adhesion mediated mainly by E-cadherin (E-cad). Here, we show that another cadherin, retinal cadherin (R-cad), is critical for maintenance of the epithelial phenotype. R-cad is expressed in nontransformed mammary epithelium but absent from tumorigenic cell lines. In vivo, R-cad was prominently expressed in the epithelium of both ducts and lobules. In human breast cancer, R-cad was down-regulated with tumor progression, with high expression in ductal carcinoma in situ and reduced expression in invasive duct carcinomas. By comparison, E-cad expression persisted in invasive breast tumors and cell lines where R-cad was lost. Consistent with these findings, R-cad knockdown in normal mammary epithelium stimulated invasiveness and disrupted formation of acini despite continued E-cad expression. Conversely, R-cad overexpression in aggressive cell lines induced glandular morphogenesis and inhibited invasiveness, tumor formation, and lung colonization. R-cad also suppressed the matrix metalloproteinase 1 (MMP1), MMP2, and cyclooxygenase 2 gene expression associated with pulmonary metastasis. The data suggest that R-cad is an adhesion molecule of the mammary epithelium, which acts as a critical regulator of the normal phenotype. As a result, R-cad loss contributes to epithelial suppression and metastatic progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Cadherins / metabolism
  • Cadherins / physiology*
  • Cell Line
  • DNA Primers
  • Female
  • Humans
  • Immunohistochemistry
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology*
  • Mice
  • Mice, Inbred BALB C
  • Neoplasm Invasiveness
  • Neoplasm Metastasis*
  • Polymerase Chain Reaction
  • RNA, Small Interfering
  • Retina / metabolism*

Substances

  • Cadherins
  • DNA Primers
  • R-cadherin
  • RNA, Small Interfering