Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines

BMC Plant Biol. 2009 Mar 23:9:34. doi: 10.1186/1471-2229-9-34.

Abstract

Background: In order to identify genes that might confer and maintain freeze resistance of winter wheat, a comparative transcriptome analysis was performed between control and 4 wk cold-acclimated crown tissue of two winter wheat lines that differ in field freeze survival. The lines, generated by azide mutagenesis of the winter wheat cultivar 'Winoka' were designated FR (75% survival) and FS (30% survival). Using two winter lines for this comparative analysis removed the influence of differential expression of the vernalization genes and allowed our study to focus on Cbf genes located within the Fr-A2 allele independent of the effect of the closely mapped Vrn allele.

Results: Vernalization genes, (Vrn-A1, B1 and D1), and the transcription factor gene, TaVrt-2, were up-regulated to the same extent in FR and FS lines with cold acclimation thus confirming that azide mutagenesis had not modified the winter habitat of the lines. One category of Cbf genes, (Cbf-2, -A22 and B-22) reflected an increase in level of expression with cold acclimation in both FR and FS lines. Another category of Cbf genes (Cbf-3, -5, -6, -12, -14 and -19) were differentially expressed between cold-acclimated FR and FS lines relative to the non-acclimated controls. Comparison of expression patterns of the two categories of Cbf genes with the expression patterns of a set of ABA-dependent and -independent Cor/Lea genes revealed similar patterns of expression for this sample of Cor/Lea genes with that for Cbf-2 and -22. This pattern of expression was also exhibited by the Vrn genes.

Conclusion: Some Cor/Lea genes may be co-regulated by the Vrn genes during cold acclimation and the Vrn genes may also control the expression of Cbf-2, -A22 and -B22. The increased freeze survival by the FR line and the increase in expression levels of wheat Cbf genes, Cbf-3, -5, -6, -12, -14 and -19 with cold acclimation in the FR line suggests a possible gain of function mutation resulting in higher levels of expression of these Cbf genes and increased freeze survival.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization / genetics*
  • Alleles
  • Cold Temperature*
  • Freezing
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Plant*
  • Genes, Plant
  • Multigene Family*
  • RNA, Plant / genetics
  • Triticum / genetics*
  • Triticum / physiology

Substances

  • RNA, Plant