The embryonic muscle transcriptome of Caenorhabditis elegans

Genome Biol. 2007;8(9):R188. doi: 10.1186/gb-2007-8-9-r188.

Abstract

Background: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also found in animals with more complex body plans. To this end, we applied microarray profiling of Caenorhabtidis elegans cells (MAPCeL) to muscle cell populations extracted from developing C. elegans embryos.

Results: We used fluorescence-activated cell sorting to isolate myo-3::green fluorescent protein (GFP) positive muscle cells, and their cultured derivatives, from dissociated early C. elegans embryos. Microarray analysis identified 7,070 expressed genes, 1,312 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle enriched gene set was validated by comparisons with known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type specific expression profiling and reveal that 60% of these transcripts have human homologs.

Conclusion: This study provides a comprehensive description of gene expression in developing C. elegans embryonic muscle cells. The finding that more than half of these muscle enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in C. elegans could reveal evolutionarily conserved models of muscle gene function, with ready application to human muscle pathologies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Caenorhabditis elegans / metabolism*
  • Cell Separation
  • Computational Biology
  • Dystrophin / metabolism
  • Flow Cytometry
  • Gene Expression Regulation, Developmental*
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Muscle Contraction
  • Muscles / embryology*
  • Neuromuscular Junction / metabolism
  • Nucleic Acid Hybridization
  • Oligonucleotide Array Sequence Analysis
  • Phylogeny
  • Transcription Factors / metabolism

Substances

  • Dystrophin
  • Transcription Factors
  • Green Fluorescent Proteins