U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 18

1.

Cobalamin C disease

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
341256
Concept ID:
C1848561
Disease or Syndrome
2.

Lesch-Nyhan syndrome

HPRT1 disorders, caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt), are typically associated with clinical evidence for overproduction of uric acid (hyperuricemia, nephrolithiasis, and/or gouty arthritis) and varying degrees of neurologic and/or behavioral problems. Historically, three phenotypes were identified in the spectrum of HPRT1 disorders: Lesch-Nyhan disease (LND) at the most severe end with motor dysfunction resembling severe cerebral palsy, intellectual disability, and self-injurious behavior; HPRT1-related neurologic dysfunction (HND) in the intermediate range with similar but fewer severe neurologic findings than LND and no self-injurious behavior; and HPRT1-related hyperuricemia (HRH) at the mild end without overt neurologic deficits. It is now recognized that these neurobehavioral phenotypes cluster along a continuum from severe to mild. [from GeneReviews]

MedGen UID:
9721
Concept ID:
C0023374
Disease or Syndrome
3.

Wolfram syndrome 1

WFS1 Wolfram syndrome spectrum disorder (WFS1-WSSD) is a progressive neurodegenerative disorder characterized by onset of diabetes mellitus (DM) and optic atrophy (OA) before age 16 years, and typically associated with other endocrine abnormalities, sensorineural hearing loss, and progressive neurologic abnormalities (cerebellar ataxia, peripheral neuropathy, dementia, psychiatric illness, and urinary tract atony). Although DM is mostly insulin-dependent, overall the course is milder (with lower prevalence of microvascular disease) than that seen in isolated DM. OA typically results in significantly reduced visual acuity in the first decade. Sensorineural hearing impairment ranges from congenital deafness to milder, sometimes progressive, hearing impairment. [from GeneReviews]

MedGen UID:
1641635
Concept ID:
C4551693
Disease or Syndrome
4.

Methylmalonic aciduria and homocystinuria type cblD

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
341253
Concept ID:
C1848552
Disease or Syndrome
5.

Methylmalonic aciduria and homocystinuria type cblF

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
336373
Concept ID:
C1848578
Disease or Syndrome
6.

Methylcobalamin deficiency type cblG

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
344426
Concept ID:
C1855128
Disease or Syndrome
7.

Methylcobalamin deficiency type cblE

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
344640
Concept ID:
C1856057
Disease or Syndrome
8.

PHGDH deficiency

Phosphoglycerate dehydrogenase deficiency (PHGDHD) is an autosomal recessive inborn error of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures (summary by Jaeken et al., 1996). [from OMIM]

MedGen UID:
400935
Concept ID:
C1866174
Disease or Syndrome
9.

Imerslund-Grasbeck syndrome type 1

3-Methylglutaconic aciduria type I (MGCA1) is a rare autosomal recessive disorder of leucine catabolism. The metabolic landmark is urinary excretion of 3-methylglutaconic acid (3-MGA) and its derivatives 3-methylglutaric acid (3-MG) and 3-hydroxyisovaleric acid (3-HIVA). Two main presentations have been described: one with onset in childhood associated with the nonspecific finding of psychomotor retardation, and the other with onset in adulthood of a progressive neurodegenerative disorder characterized by ataxia, spasticity, and sometimes dementia; these patients develop white matter lesions in the brain. However, some asymptomatic pediatric patients have been identified by newborn screening and show no developmental abnormalities when reexamined later in childhood (summary by Wortmann et al., 2010). Genetic Heterogeneity and Classification of Methylglutaconic Aciduria Methylglutaconic aciduria is a clinically and genetically heterogeneous disorder. Type II MGCA (MGCA2), also known as Barth syndrome (BTHS; 302060), is caused by mutation in the tafazzin gene (TAZ; 300394) on chromosome Xq28. It is characterized by mitochondrial cardiomyopathy, short stature, skeletal myopathy, and recurrent infections; cognitive development is normal. Type III MGCA (MGCA3; 258501), caused by mutation in the OPA3 gene (606580) on chromosome 19q13, involves optic atrophy, movement disorder, and spastic paraplegia. In types II and III, the elevations of 3-methylglutaconate and 3-methylglutarate in urine are modest. Type IV MGCA (MGCA4; 250951) represents an unclassified group of patients who have severe psychomotor retardation and cerebellar dysgenesis. Type V MGCA (MGCA5; 610198), caused by mutation in the DNAJC19 gene (608977) on chromosome 3q26, is characterized by early-onset dilated cardiomyopathy with conduction defects, nonprogressive cerebellar ataxia, testicular dysgenesis, and growth failure in addition to 3-methylglutaconic aciduria (Chitayat et al., 1992; Davey et al., 2006). Type VI MGCA (MGCA6; 614739), caused by mutation in the SERAC1 gene (614725) on chromosome 6q25, includes deafness, encephalopathy, and a Leigh-like syndrome. Type VII MGCA (MGCA7B, 616271 and MGCA7A, 619835), caused by mutation in the CLPB gene (616254) on chromosome 11q13, includes cataracts, neurologic involvement, and neutropenia. Type VIII MGCA (MGCA8; 617248) is caused by mutation in the HTRA2 gene (606441) on chromosome 2p13. Type IX MGCA (MGCA9; 617698) is caused by mutation in the TIMM50 gene (607381) on chromosome 19q13. Eriguchi et al. (2006) noted that type I MGCA is very rare, with only 13 patients reported in the literature as of 2003. Wortmann et al. (2013) proposed a pathomechanism-based classification for 'inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature.' [from OMIM]

MedGen UID:
865256
Concept ID:
C4016819
Finding
10.

Hereditary intrinsic factor deficiency

Congenital pernicious anemia (PA), or intrinsic factor deficiency, is a rare disorder characterized by the lack of gastric intrinsic factor in the presence of normal acid secretion and mucosal cytology and the absence of GIF antibodies that are found in the acquired form of pernicious anemia (170900). See also pernicious anemia due to defect in the receptor for vitamin B12/intrinsic factor (261100). [from OMIM]

MedGen UID:
235598
Concept ID:
C1394891
Disease or Syndrome
11.

Constitutional megaloblastic anemia with severe neurologic disease

Dihydrofolate reductase deficiency is an autosomal recessive metabolic disorder characterized by the hematologic findings of megaloblastic anemia and variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy (Banka et al., 2011) to childhood absence epilepsy with learning difficulties to lack of symptoms (Cario et al., 2011). Treatment with folinic acid can ameliorate some of the symptoms. [from OMIM]

MedGen UID:
462555
Concept ID:
C3151205
Disease or Syndrome
12.

Imerslund-Grasbeck syndrome type 2

Imerslund-Grasbeck syndrome-2 (IGS2) is an autosomal recessive disorder characterized by onset of megaloblastic anemia associated with decreased serum vitamin B12 (cobalamin, Cbl) in infancy or early childhood. Low molecular weight (LMW) proteinuria is frequently present, but usually occurs later and is usually mild or subclinical. Patients often present with vague symptoms, including failure to thrive, loss of appetite, fatigue, lethargy, and/or recurrent infections. Treatment with vitamin B12 results in sustained clinical improvement of the anemia. The proteinuria is nonprogressive, and affected individuals do not have deterioration of kidney function; correct diagnosis is important to prevent unnecessary treatment. The disorder results from a combination of vitamin B12 deficiency due to selective malabsorption of the vitamin, and impaired reabsorption of LMW proteins in the proximal renal tubule. These defects are caused by disruption of the AMN/CUBN (602997) complex that forms the 'cubam' receptor responsible for intestinal uptake of B12/GIF (CBLIF; 609342). In the kidney, AMN/CUBN interacts with the endocytic receptor megalin (LRP2; 600073), which is important for the reabsorption of plasma proteins (summary by Grasbeck, 2006, De Filippo et al., 2013, and Storm et al., 2013). For a discussion of genetic heterogeneity of Imerslund-Grasbeck syndrome, see 261100. [from OMIM]

MedGen UID:
865385
Concept ID:
C4016948
Disease or Syndrome
13.

Glutamate formiminotransferase deficiency

Glutamate formiminotransferase deficiency is an autosomal recessive disorder and the second most common inborn error of folate metabolism. Features of a severe phenotype include elevated levels of formiminoglutamate (FIGLU) in the urine in response to histidine administration, megaloblastic anemia, and mental retardation. Features of a mild phenotype include high urinary excretion of FIGLU in the absence of histidine administration, mild developmental delay, and no hematologic abnormalities (summary by Hilton et al., 2003). [from OMIM]

MedGen UID:
82823
Concept ID:
C0268609
Disease or Syndrome
14.

Wolfram syndrome, mitochondrial form

MedGen UID:
325511
Concept ID:
C1838782
Disease or Syndrome
15.

Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinemia

Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinemia is an inborn error of folate metabolism due to deficiency of methylenetetrahydrofolate dehydrogenase-1. Manifestations may include hemolytic uremic syndrome, macrocytosis, epilepsy, hearing loss, retinopathy, mild mental retardation, lymphopenia involving all subsets, and low T-cell receptor excision circles. Folinic acid supplementation is an effective treatment (summary by Ramakrishnan et al., 2016). [from OMIM]

MedGen UID:
1615364
Concept ID:
C4540434
Disease or Syndrome
16.

Pernicious anemia

Megaloblastic anemia caused by vitamin B-12 deficiency due to impaired absorption. The impaired absorption of vitamin B-12 is secondary to atrophic gastritis and loss of gastric parietal cells. [from NCI]

MedGen UID:
1531
Concept ID:
C0002892
Disease or Syndrome
17.

Intrinsic factor and r binder, combined congenital deficiency of

MedGen UID:
340942
Concept ID:
C1855721
Disease or Syndrome
18.

Megaloblastic anemia

Anemia characterized by the presence of erythroblasts that are larger than normal (megaloblasts). [from HPO]

MedGen UID:
1527
Concept ID:
C0002888
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...