NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE40630 Query DataSets for GSE40630
Status Public on Sep 06, 2012
Title Divergent dysregulation of gene expression in Fmr1 and Tsc2 knockout mouse models of autism spectrum disorders
Organism Mus musculus
Experiment type Expression profiling by array
Summary Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity.
To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis.
Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/−) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues.
Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/− mice mirror some, but not all, of the perturbed molecular pathways in the brain.

 
Overall design For the Fmr1-KO model, 10 mice, consisting of 5 KO and 5 WT mice, were profiled. Thus, 10 pairs of blood and cerebella samples were profiled. Likewise, for the Tsc+/- model, 3 transgenic and 3 WT mice were sacrificed and paired blood and cerebella samples were prepared for gene expression profiling. All samples were profiled using the Affymetrix Mouse Gene ST 1.0 ST arrays. Three factors—tissue (i.e. blood vs. cerebellum), treatment (i.e. knockout vs. wildtype), and genetic background (Fmr1-KO vs. Tsc2+/-)—were analyzed with analysis of variance (ANOVA). Subsequently, we compared blood and brain gene expression changes in Fmr1 and Tsc2 knockout mice models using WT littermates as controls using t-tests with unequal variances. The false discovery rate (FDR) was calculated using Storey and Tibshirani’s method.
 
Contributor(s) Kong S, Campbell MG
Citation(s) 24564913
Submission date Sep 05, 2012
Last update date Mar 04, 2019
Contact name Sek Won Kong
E-mail(s) swkong@enders.tch.harvard.edu
Phone 617-919-2689
Organization name Boston Children's Hospital
Department Informatics Program
Lab EN137
Street address 300 Longwood Avenue
City Boston
State/province MA
ZIP/Postal code 02115
Country USA
 
Platforms (1)
GPL6246 [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]
Samples (32)
GSM998360 FmrKO1_blood
GSM998361 FmrKO2_blood
GSM998362 FmrKO3_blood
Relations
BioProject PRJNA174428

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE40630_RAW.tar 134.7 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap