NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|34915990|ref|NP_919248|]
View 

RNA-binding protein with multiple splicing 2 [Homo sapiens]

Protein Classification

RRM_RBPMS2 domain-containing protein( domain architecture ID 10190558)

RRM_RBPMS2 domain-containing protein

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_RBPMS2 cd12683
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 ...
30-105 2.50e-48

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2); This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


:

Pssm-ID: 410084 [Multi-domain]  Cd Length: 76  Bit Score: 152.50  E-value: 2.50e-48
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 105
Cdd:cd12683   1 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTSKQPVGFVTFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 76
 
Name Accession Description Interval E-value
RRM_RBPMS2 cd12683
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 ...
30-105 2.50e-48

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2); This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410084 [Multi-domain]  Cd Length: 76  Bit Score: 152.50  E-value: 2.50e-48
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 105
Cdd:cd12683   1 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTSKQPVGFVTFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 76
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
33-94 4.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 56.47  E-value: 4.86e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990    33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLI--KLTAR-QPVGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLvrDETGRsKGFAFVEFEDEEDAEKAIEALNGKELG 65
RRM smart00360
RNA recognition motif;
32-94 1.35e-09

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 52.60  E-value: 1.35e-09
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990     32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLI---KLTAR-QPVGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLvrdKETGKsKGFAFVEFESEEDAEKALEALNGKELD 67
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
33-131 3.64e-07

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 49.55  E-value: 3.64e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990    33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLIklTAR----------QPVGFVIFDSRAGAEAAKNALNGIRfdPEN-PQTL 101
Cdd:TIGR01661  92 LYVSGLPKTMTQHELESIFSPF----GQII--TSRilsdnvtglsKGVGFIRFDKRDEADRAIKTLNGTT--PSGcTEPI 163
                          90       100       110
                  ....*....|....*....|....*....|....
gi 34915990   102 RLEFA----KANTKMAKSKLMATPNPSNVHPALG 131
Cdd:TIGR01661 164 TVKFAnnpsSSNSKGLLSQLEAVQNPQTTRVPLS 197
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
32-94 2.76e-03

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 35.46  E-value: 2.76e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPF-----------------KGYegslikltarqpvGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:COG0724   3 KIYVGNLPYSVTEEDLRELFSEYgevtsvklitdretgrsRGF-------------GFVEMPDDEEAQAAIEALNGAELM 69
 
Name Accession Description Interval E-value
RRM_RBPMS2 cd12683
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 ...
30-105 2.50e-48

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2); This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410084 [Multi-domain]  Cd Length: 76  Bit Score: 152.50  E-value: 2.50e-48
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 105
Cdd:cd12683   1 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTSKQPVGFVTFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 76
RRM_RBPMS cd12682
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing ...
30-105 1.64e-44

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing (RBP-MS); This subfamily corresponds to the RRM of RBP-MS, also termed heart and RRM expressed sequence (hermes), an RNA-binding proteins found in various vertebrate species. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RBP-MS physically interacts with Smad2, Smad3 and Smad4 and plays a role in regulation of Smad-mediated transcriptional activity. In addition, RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development.


Pssm-ID: 410083 [Multi-domain]  Cd Length: 76  Bit Score: 142.88  E-value: 1.64e-44
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEF 105
Cdd:cd12682   1 VRTLFVSGLPLDIKPRELYLLFRPFKGYEGSLIKLTSKQPVGFVSFDSRSEAEAAKNALNGIRFDPEIPQTLRLEF 76
RRM_RBPMS_like cd12420
RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like ...
31-104 2.58e-42

RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like proteins; This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4.


Pssm-ID: 409854 [Multi-domain]  Cd Length: 76  Bit Score: 137.07  E-value: 2.58e-42
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTAR--QPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLE 104
Cdd:cd12420   1 RTLFVSGLPLDVKERELYNLFRPLPGYEASQLKFTGKntQPVGFVTFESRAAAEAAKDALQGMRFDPDTPQVLRLE 76
RRM_cpo cd12684
RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein ...
30-107 5.54e-39

RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein and similar proteins; This subfamily corresponds to the RRM of Cpo, an RNA-binding protein encoded by Drosophila couch potato (cpo) gene. Cpo contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It may control the processing of RNA molecules required for the proper functioning of the peripheral nervous system (PNS).


Pssm-ID: 410085 [Multi-domain]  Cd Length: 83  Bit Score: 128.87  E-value: 5.54e-39
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQ-----PVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLE 104
Cdd:cd12684   1 VRTLFVSGLPMDAKPRELYLLFRAYKGYEGSLLKVTSKNgkttsPVGFVTFLSRQAAEAAKQDLQGVRFDPDLPQTLRLE 80

                ...
gi 34915990 105 FAK 107
Cdd:cd12684  81 FAK 83
RRM_AtNSRA_like cd21618
RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein ...
31-107 9.87e-16

RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein A (AtNSRA) and similar protein; AtNSRA is an alternative splicing (AS) regulator that binds to specific mRNAs and modulates auxin effects on the transcriptome. It can be displaced from its targets upon binding to AS competitor long non-coding RNA (ASCO-RNA). Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410197 [Multi-domain]  Cd Length: 87  Bit Score: 69.21  E-value: 9.87e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFKGYEG-SLI----KLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQ--TLRL 103
Cdd:cd21618   4 STLYVEGLPLDATEREVAHIFRPFPGFKSvRLVpkegKRGRKLVLCFVDFADAQQAAAALETLQGYRLDEDDSDskGLRI 83

                ....
gi 34915990 104 EFAK 107
Cdd:cd21618  84 SFAR 87
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
33-94 4.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 56.47  E-value: 4.86e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990    33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLI--KLTAR-QPVGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLvrDETGRsKGFAFVEFEDEEDAEKAIEALNGKELG 65
RRM smart00360
RNA recognition motif;
32-94 1.35e-09

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 52.60  E-value: 1.35e-09
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990     32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLI---KLTAR-QPVGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLvrdKETGKsKGFAFVEFESEEDAEKALEALNGKELD 67
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
33-94 2.26e-08

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 49.20  E-value: 2.26e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLI---KLTARQPVGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIvrdRDGKSKGFAFVEFESPEDAEKALEALNGTELG 65
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
31-98 2.38e-08

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 49.10  E-value: 2.38e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFKGYEGslIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENP 98
Cdd:cd12247   3 KILFLQNLPEETTKEMLEMLFNQFPGFKE--VRLVPRRGIAFVEFETEEQATVALQALQGFKITPGHA 68
RRM_ACINU cd12432
RNA recognition motif (RRM) found in apoptotic chromatin condensation inducer in the nucleus ...
72-106 1.24e-07

RNA recognition motif (RRM) found in apoptotic chromatin condensation inducer in the nucleus (acinus) and similar proteins; This subfamily corresponds to the RRM of Acinus, a caspase-3-activated nuclear factor that induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. It is essential for apoptotic chromatin condensation and may also participate in nuclear structural changes occurring in normal cells. Acinus contains a P-loop motif and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which indicates Acinus might have ATPase and DNA/RNA-binding activity.


Pssm-ID: 409866 [Multi-domain]  Cd Length: 90  Bit Score: 47.59  E-value: 1.24e-07
                        10        20        30
                ....*....|....*....|....*....|....*
gi 34915990  72 FVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEFA 106
Cdd:cd12432  43 YVTYSSEEEAVATREALHGVVWPSSNGKRLKVEFV 77
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
33-90 1.30e-07

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 47.32  E-value: 1.30e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLIklTAR----------QPVGFVIFDSRAGAEAAKNALNG 90
Cdd:cd12652   3 LYVSGLPKTMTQKELEQLFSQF----GRII--TSRilcdnvtglsRGVGFIRFDKRVEAERAIKALNG 64
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
33-131 3.64e-07

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 49.55  E-value: 3.64e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990    33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLIklTAR----------QPVGFVIFDSRAGAEAAKNALNGIRfdPEN-PQTL 101
Cdd:TIGR01661  92 LYVSGLPKTMTQHELESIFSPF----GQII--TSRilsdnvtglsKGVGFIRFDKRDEADRAIKTLNGTT--PSGcTEPI 163
                          90       100       110
                  ....*....|....*....|....*....|....
gi 34915990   102 RLEFA----KANTKMAKSKLMATPNPSNVHPALG 131
Cdd:TIGR01661 164 TVKFAnnpsSSNSKGLLSQLEAVQNPQTTRVPLS 197
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
32-107 7.68e-07

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 45.22  E-value: 7.68e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  32 TLFVSGLPVDIKPRE----LYLLFRPFkgyeGSLIKLTARQPVG-----FVIFDSRAGAEAAKNALNGIRF-DpenpQTL 101
Cdd:cd12246   1 TLYINNLNEKIKKDElkrsLYALFSQF----GPVLDIVASKSLKmrgqaFVVFKDVESATNALRALQGFPFyG----KPM 72

                ....*.
gi 34915990 102 RLEFAK 107
Cdd:cd12246  73 RIQYAK 78
RRM2_U2B cd12481
RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B") ...
33-107 2.12e-06

RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B"); This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B"), a unique protein that comprises the U2 snRNP. It was initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus.


Pssm-ID: 240925 [Multi-domain]  Cd Length: 80  Bit Score: 44.23  E-value: 2.12e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLIkLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENpqTLRLEFAK 107
Cdd:cd12481   8 LFLNNLPEETNEMMLSMLFNQFPGFKEVRL-VPGRHDIAFVEFENEAQAGAARDALQGFKITPSH--AMKITYAK 79
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
32-107 2.46e-06

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 43.77  E-value: 2.46e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENPQTLRLEFAK 107
Cdd:cd12245   4 TLFVANLGPNVSEQELRQLFSRQPGFRRLRMHNKGGGPVCFVEFEDVPFATQALNHLQGAILSSSDRGGIRIEYAK 79
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
32-107 2.66e-06

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 43.59  E-value: 2.66e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990  32 TLFVSGL-PVDIKPRELYLLFRPFkgyeGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIRFDpenPQTLRLEFAK 107
Cdd:cd12233   1 TLFVVGFdPGTTREEDIEKLFEPF----GPLVRCDIRKTFAFVEFEDSEDATKALEALHGSRID---GSVLTVEFVK 70
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
33-105 4.17e-06

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 43.05  E-value: 4.17e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKgyEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIrfdPENPQTLRLEF 105
Cdd:cd12332   4 LFVGNLPNDITEEEFKELFQKYG--EVSEVFLNKGKGFGFIRLDTRANAEAAKAELDGT---PRKGRQLRVRF 71
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
33-103 1.44e-05

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 41.84  E-value: 1.44e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLI-------KLTAR-QPVGFVIFDSRAGAEAAKNALNGIRfdPE---NPQTL 101
Cdd:cd12376   3 LYVSGLPKTMTQKELEQLFSQY----GRIItsrilrdQLTGVsRGVGFIRFDKRIEAEEAIKGLNGQK--PEgasEPITV 76

                ..
gi 34915990 102 RL 103
Cdd:cd12376  77 KF 78
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
32-90 4.74e-05

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 40.38  E-value: 4.74e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFkgyeGSL--IKLTARQPVGFVIFDSRAGAEAAKNALNG 90
Cdd:cd12346   3 TVFVGGLDPNVTEEDLRVLFGPF----GEIvyVKIPPGKGCGFVQFVNRASAEAAIQKLQG 59
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
33-98 6.87e-05

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 39.69  E-value: 6.87e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGslIKLTARQPVGFVIFDSRAGAEAAKNALNGiRFDPENP 98
Cdd:cd12340   2 LFVRPFPPDTSESAIREIFSPYGPVKE--VKMLSDSNFAFVEFEELEDAIRAKDSVHG-RVLNNEP 64
RRM2_SNF cd12479
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF ...
31-107 7.40e-05

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM2 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 240923 [Multi-domain]  Cd Length: 80  Bit Score: 40.08  E-value: 7.40e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIkLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENpqTLRLEFAK 107
Cdd:cd12479   6 QILFLTNLPEETNEMMLSMLFNQFPGFKEVRL-VPGRHDIAFVEFENEVQSAAAKEALQGFKITPTH--AMKITFAK 79
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
31-90 1.32e-04

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 39.18  E-value: 1.32e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFkgyeGSLIKL-TARQPVGFVI---FDSRAgAEAAKNALNG 90
Cdd:cd12524   2 RTLFVRNINSSVEDEELRALFEQF----GEIRTLyTACKHRGFIMvsyYDIRA-AQSAKRALQG 60
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
30-84 1.38e-04

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 38.80  E-value: 1.38e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990  30 VRTLFVSGLPVDIKPRELYLLFRPFkgyeGSL--IKLTARQPVGFVIFDSRAGAEAA 84
Cdd:cd12224   1 ITTLYVGGLGDKITEKDLRDHFYQF----GEIrsITVVARQQCAFVQFTTRQAAERA 53
RRM2_U1A cd12480
RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 ...
33-107 1.91e-04

RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A); This subgroup corresponds to the RRM2 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). U1A also binds to a flavivirus NS5 protein and plays an important role in virus replication. It contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and it may be free for binding other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import.


Pssm-ID: 409908 [Multi-domain]  Cd Length: 86  Bit Score: 38.94  E-value: 1.91e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLIkLTARQPVGFVIFDSRAGAEAAKNALNGIRFDPENpqTLRLEFAK 107
Cdd:cd12480  14 LFLTNLPEETNELMLSMLFNQFPGFKEVRL-VPGRHDIAFVEFDNEVQAGAAREALQGFKITQSN--AMKISFAK 85
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
33-90 2.56e-04

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 38.37  E-value: 2.56e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLI-------KLTAR-QPVGFVIFDSRAGAEAAKNALNG 90
Cdd:cd12362   1 LFVYHLPNEFTDQDLYQLFAPF----GNVVsakvfvdKNTGRsKGFGFVSYDNPLSAQAAIKAMNG 62
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
32-94 2.80e-04

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 38.30  E-value: 2.80e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFKG-YEGSLI--KLTARQPV-GFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:cd21608   1 KLYVGNLSWDTTEDDLRDLFSEFGEvESAKVItdRETGRSRGfGFVTFSTAEAAEAAIDALNGKELD 67
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
32-94 3.85e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 37.87  E-value: 3.85e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFkgyeGSLIKLT------ARQPVGF--VIFDSRAGAEAAKNALNGIRFD 94
Cdd:cd12408   1 TIRVTNLSEDATEEDLRELFRPF----GPISRVYlakdkeTGQSKGFafVTFETREDAERAIEKLNGFGYD 67
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
32-104 5.01e-04

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 37.42  E-value: 5.01e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQPV-GFVIFDSRAGAEAAKNALNGIRFDpenPQTLRLE 104
Cdd:cd12599   1 RVYVGNLPMDIREREVEDLFSKYGPVVSIDLKIPPRPPAyAFVEFEDARDAEDAIRGRDGYDFD---GHRLRVE 71
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
33-106 6.65e-04

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 37.39  E-value: 6.65e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLI---KLTA-RQPVGFVIFDSRAGAEAAKNALNGIRfDPENPQTLRLEFA 106
Cdd:cd12775   8 LYVSGLPKTMTQKELEQLFSQYGRIITSRIlvdQVTGvSRGVGFIRFDKRIEAEEAIKGLNGQK-PPGATEPITVKFA 84
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
33-106 7.24e-04

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 37.18  E-value: 7.24e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  33 LFVSGLPVDIKPRELYLLFrpfkGYEGSLI-------KLTAR-QPVGFVIFDSRAGAEAAKNALNGIrFDPENPQTLRLE 104
Cdd:cd12651   5 LYVTNLPRTITEDELDTIF----GAYGNIVqknllrdKLTGRpRGVAFVRYDKREEAQAAISALNGT-IPEGGTQPLSVR 79

                ..
gi 34915990 105 FA 106
Cdd:cd12651  80 LA 81
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
33-108 1.31e-03

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 36.50  E-value: 1.31e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFkGYEGSLIKLTARQP--------VGFVIFDSRAGAEAAKNALNGIrfDPENpQTLRLE 104
Cdd:cd12223   4 LYVGNLPPSVTEEVLLREFGRF-GPLASVKIMWPRTEeerrrnrnCGFVAFMSRADAERAMRELNGK--DVMG-YELKLG 79

                ....
gi 34915990 105 FAKA 108
Cdd:cd12223  80 WGKA 83
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
33-90 1.42e-03

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 36.62  E-value: 1.42e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLT----ARQPVGFVIFDSRAGAEAAKNALNG 90
Cdd:cd12774   8 LYVSGLPKTMTQKELEQLFSQYGRIITSRILVDqvtgVSRGVGFIRFDKRIEAEEAIKGLNG 69
RRM_NRD1_SEB1_like cd12331
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, ...
31-93 1.58e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein seb1 and similar proteins; This subfamily corresponds to the RRM of Nrd1 and Seb1. Nrd1 is a novel heterogeneous nuclear ribonucleoprotein (hnRNP)-like RNA-binding protein encoded by gene NRD1 (for nuclear pre-mRNA down-regulation) from yeast S. cerevisiae. It is implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by polymerase II, and plays a critical role in pre-mRNA metabolism. Nrd1 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a short arginine-, serine-, and glutamate-rich segment similar to the regions rich in RE and RS dipeptides (RE/RS domains) in many metazoan splicing factors, and a proline- and glutamine-rich C-terminal domain (P+Q domain) similar to domains found in several yeast hnRNPs. Disruption of NRD1 gene is lethal to yeast cells. Its N-terminal domain is sufficient for viability, which may facilitate interactions with RNA polymerase II where Nrd1 may function as an auxiliary factor. By contrast, the RRM, RE/RS domains, and P+Q domain are dispensable. Seb1 is an RNA-binding protein encoded by gene seb1 (for seven binding) from fission yeast S. pombe. It is essential for cell viability and bound directly to Rpb7 subunit of RNA polymerase II. Seb1 is involved in processing of polymerase II transcripts. It also contains one RRM motif and a region rich in arginine-serine dipeptides (RS domain).


Pssm-ID: 409768 [Multi-domain]  Cd Length: 79  Bit Score: 36.38  E-value: 1.58e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQpvGFVIFDSRAGAEAAKNALNGIRF 93
Cdd:cd12331   4 RTLFIGGVTLNMKEWDLRSVFKRFGEVQSVILNNSRRH--AFVKMYSRHEAENALQAMEKVPD 64
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
31-94 1.59e-03

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 36.06  E-value: 1.59e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFkgyeGSL--IKL--------TArqpvgFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:cd12241   3 RILYVRNLPYKISSEELYDLFGKY----GAIrqIRIgntketrgTA-----FVVYEDIFDAKNACDHLSGFNVC 67
RRM1_PSF cd12587
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
33-105 1.74e-03

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410000 [Multi-domain]  Cd Length: 71  Bit Score: 35.99  E-value: 1.74e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKgyEGSLIKLTARQPVGFVIFDSRAGAEAAKNALNGIrfdPENPQTLRLEF 105
Cdd:cd12587   4 LFVGNLPADITEDEFKRLFAKYG--EPGEVFINKGKGFGFIKLESRALAEIAKAELDDT---PMRGRQLRVRF 71
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
33-90 1.96e-03

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 36.13  E-value: 1.96e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLT----ARQPVGFVIFDSRAGAEAAKNALNG 90
Cdd:cd12776   4 LYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDqvtgVSRGVGFIRFDKRIEAEEAIKGLNG 65
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
32-94 2.76e-03

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 35.46  E-value: 2.76e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPF-----------------KGYegslikltarqpvGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:COG0724   3 KIYVGNLPYSVTEEDLRELFSEYgevtsvklitdretgrsRGF-------------GFVEMPDDEEAQAAIEALNGAELM 69
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
32-105 3.46e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 35.03  E-value: 3.46e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTARQP-VGFVIFDSRAGAEAAKNALNGIRFDpenPQTLRLEF 105
Cdd:cd12338   1 RIYVGNLPGDIRERDIEDLFYKYGPILAIDLKNRRRGPpFAFVEFEDPRDAEDAIRGRDGYDFD---GYRLRVEF 72
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
33-107 3.51e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 34.91  E-value: 3.51e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 34915990  33 LFVSGLPVDIKPRELYLLFRPFkgyeGSLIKL-TARQPVG--FVIFDSRAGAEAAKNALNGIRFdpeNPQTLRLEFAK 107
Cdd:cd12373   2 VYVGNLGPRVTKRELEDAFEKY----GPLRNVwVARNPPGfaFVEFEDPRDAEDAVRALDGRRI---CGSRVRVELSR 72
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
33-91 5.47e-03

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 36.92  E-value: 5.47e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 34915990    33 LFVSGLPVDIKPRELYLLFRPFKGYEGSLI----KLTARQPVGFVIFDSRAGAEAAKNALNGI 91
Cdd:TIGR01659 110 LIVNYLPQDMTDRELYALFRTIGPINTCRImrdyKTGYSFGYAFVDFGSEADSQRAIKNLNGI 172
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
32-94 5.76e-03

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 34.77  E-value: 5.76e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFKGYEGSLIKLTA--RQP-------VGFVIFDSRAGAEAAKNALNGIRFD 94
Cdd:cd12319   2 TLFVKNLNFSTTNQHLTDVFKHLDGFVFARVKTKPdpKRPgktlsmgFGFVGFKTKEQAQAALKAMDGFVLD 73
RRM_Srp1p_like cd12467
RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and ...
32-107 6.68e-03

RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and similar proteins; This subgroup corresponds to the RRM domain in Srp1p encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but not essential for growth. Srp1p is closely related to the SR protein family found in metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. Some family members also contain another RRM domain.


Pssm-ID: 240913 [Multi-domain]  Cd Length: 78  Bit Score: 34.39  E-value: 6.68e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  32 TLFVSGLPVDIKPRELYLLFRPFkgyeGSLIKL--------TARqPVGFVIFDSRAGAEAAKNALNGIRFdPENPQTLRL 103
Cdd:cd12467   1 TLYVTGFGAETRARDLAYEFERY----GRLVRCdippprtfQSR-PFAFVEYESHRDAEDAYEEMHGRRF-PDTGDTLHV 74

                ....
gi 34915990 104 EFAK 107
Cdd:cd12467  75 QWAK 78
RRM_Yme2p_like cd12433
RNA recognition motif (RRM) found in yeast mitochondrial escape protein 2 (Yme2p) and similar ...
31-105 6.83e-03

RNA recognition motif (RRM) found in yeast mitochondrial escape protein 2 (Yme2p) and similar proteins; This subfamily corresponds to the RRM of Yme2p, also termed protein RNA12, an inner mitochondrial membrane protein that plays a critical role in mitochondrial DNA transactions. It may serve as a mediator of nucleoid structure and number in mitochondria of the yeast Saccharomyces cerevisiae. Yme2p contains an exonuclease domain, an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal domain.


Pssm-ID: 409867 [Multi-domain]  Cd Length: 86  Bit Score: 34.55  E-value: 6.83e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPFkgyeGSLIKLTARQP-----VGFVIFDSRAGAEAAKNALNGIRFDPENpQTLRLEF 105
Cdd:cd12433   5 RTIRVEFEGPELSQEELYSLFRPY----GRINDITPPPPdslprYATVTFRRIRGAIAAKNCLHGYVVNEGG-TRLRIQY 79
RRM1_RBM34 cd12394
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
31-54 9.89e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409828 [Multi-domain]  Cd Length: 91  Bit Score: 34.11  E-value: 9.89e-03
                        10        20
                ....*....|....*....|....
gi 34915990  31 RTLFVSGLPVDIKPRELYLLFRPF 54
Cdd:cd12394   1 RTVFVGNLPVTVKKKALKKLFKEF 24
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH