NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1339869093|ref|NP_001347403|]
View 

8-oxo-dGDP phosphatase NUDT18 isoform 2 [Mus musculus]

Protein Classification

NUDIX domain-containing protein( domain architecture ID 225)

NUDIX domain-containing protein may catalyze the hydrolysis of nucleoside diphosphates linked to other moieties (X); it would require a divalent cation, such as Mg2+ or Mn2+ for its activity

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
NUDIX_Hydrolase super family cl00447
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ...
1-115 9.40e-63

NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


The actual alignment was detected with superfamily member cd04671:

Pssm-ID: 469772 [Multi-domain]  Cd Length: 130  Bit Score: 193.30  E-value: 9.40e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIRFVFLARPTGGVLKTSKDADSE 80
Cdd:cd04671    16 MIQEAKRSCRGKWYLPAGRVEPGESIVEAAKREVKEETGLKCEPSTLLSVEEAGGSWYRFVFTGNITGGKLKTPADADSE 95
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1339869093  81 SLQAGWYPRVSLPTPLRAHDVLHLVELGAKFCQQA 115
Cdd:cd04671    96 SLQAFWIDDISTKLPLRAHDILRLIERARQYRRKL 130
 
Name Accession Description Interval E-value
NUDIX_8DGDPP_Nudt18 cd04671
8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX ...
1-115 9.40e-63

8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 18/Nudt18; 2-hydroxy-DADP phosphatase; 7,8-dihydro-8-oxoguanine phosphatase, hydrolyzes 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing deoxyribo- and ribonucleoside diphosphates to the monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467555 [Multi-domain]  Cd Length: 130  Bit Score: 193.30  E-value: 9.40e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIRFVFLARPTGGVLKTSKDADSE 80
Cdd:cd04671    16 MIQEAKRSCRGKWYLPAGRVEPGESIVEAAKREVKEETGLKCEPSTLLSVEEAGGSWYRFVFTGNITGGKLKTPADADSE 95
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1339869093  81 SLQAGWYPRVSLPTPLRAHDVLHLVELGAKFCQQA 115
Cdd:cd04671    96 SLQAFWIDDISTKLPLRAHDILRLIERARQYRRKL 130
YjhB COG1051
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];
1-106 9.85e-19

ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];


Pssm-ID: 440671 [Multi-domain]  Cd Length: 125  Bit Score: 79.64  E-value: 9.85e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV--EERGASWIRFVFLARPTGGVLKtskdAD 78
Cdd:COG1051    22 LVRRADEPGKGLWALPGGKVEPGETPEEAALRELREETGLEVEVLELLGVfdHPDRGHVVSVAFLAEVLSGEPR----AD 97
                          90       100
                  ....*....|....*....|....*...
gi 1339869093  79 SESLQAGWYPRVSLPTPLRAHDVLHLVE 106
Cdd:COG1051    98 DEIDEARWFPLDELPELAFTPADHEILE 125
NUDIX pfam00293
NUDIX domain;
1-88 5.51e-15

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 69.82  E-value: 5.51e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGAS---------WIRFVFLARPTGgvl 71
Cdd:pfam00293  19 LVRRSKKPFPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPfdgrfpdehEILYVFLAEVEG--- 95
                          90
                  ....*....|....*..
gi 1339869093  72 KTSKDADSESLQAGWYP 88
Cdd:pfam00293  96 ELEPDPDGEVEEVRWVP 112
PRK15472 PRK15472
nucleoside triphosphatase NudI; Provisional
11-39 3.88e-06

nucleoside triphosphatase NudI; Provisional


Pssm-ID: 185369 [Multi-domain]  Cd Length: 141  Bit Score: 45.51  E-value: 3.88e-06
                          10        20
                  ....*....|....*....|....*....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:PRK15472   31 GQWALSGGGVEPGERIEEALRREIREELG 59
 
Name Accession Description Interval E-value
NUDIX_8DGDPP_Nudt18 cd04671
8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX ...
1-115 9.40e-63

8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 18/Nudt18; 2-hydroxy-DADP phosphatase; 7,8-dihydro-8-oxoguanine phosphatase, hydrolyzes 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing deoxyribo- and ribonucleoside diphosphates to the monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467555 [Multi-domain]  Cd Length: 130  Bit Score: 193.30  E-value: 9.40e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIRFVFLARPTGGVLKTSKDADSE 80
Cdd:cd04671    16 MIQEAKRSCRGKWYLPAGRVEPGESIVEAAKREVKEETGLKCEPSTLLSVEEAGGSWYRFVFTGNITGGKLKTPADADSE 95
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1339869093  81 SLQAGWYPRVSLPTPLRAHDVLHLVELGAKFCQQA 115
Cdd:cd04671    96 SLQAFWIDDISTKLPLRAHDILRLIERARQYRRKL 130
NUDIX_Hydrolase cd02883
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ...
1-88 1.35e-19

NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467528 [Multi-domain]  Cd Length: 106  Bit Score: 81.30  E-value: 1.35e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV-----EERGASWIRFVFLARPTGGVLKTsk 75
Cdd:cd02883    16 LVRRSDGPGPGGWELPGGGVEPGETPEEAAVREVREETGLDVEVLRLLGVyefpdPDEGRHVVVLVFLARVVGGEPPP-- 93
                          90
                  ....*....|...
gi 1339869093  76 DADSESLQAGWYP 88
Cdd:cd02883    94 LDDEEISEVRWVP 106
YjhB COG1051
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];
1-106 9.85e-19

ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];


Pssm-ID: 440671 [Multi-domain]  Cd Length: 125  Bit Score: 79.64  E-value: 9.85e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV--EERGASWIRFVFLARPTGGVLKtskdAD 78
Cdd:COG1051    22 LVRRADEPGKGLWALPGGKVEPGETPEEAALRELREETGLEVEVLELLGVfdHPDRGHVVSVAFLAEVLSGEPR----AD 97
                          90       100
                  ....*....|....*....|....*...
gi 1339869093  79 SESLQAGWYPRVSLPTPLRAHDVLHLVE 106
Cdd:COG1051    98 DEIDEARWFPLDELPELAFTPADHEILE 125
NUDIX pfam00293
NUDIX domain;
1-88 5.51e-15

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 69.82  E-value: 5.51e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGAS---------WIRFVFLARPTGgvl 71
Cdd:pfam00293  19 LVRRSKKPFPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPfdgrfpdehEILYVFLAEVEG--- 95
                          90
                  ....*....|....*..
gi 1339869093  72 KTSKDADSESLQAGWYP 88
Cdd:pfam00293  96 ELEPDPDGEVEEVRWVP 112
NUDIX_ADPRase cd04673
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ...
2-88 1.13e-14

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467557 [Multi-domain]  Cd Length: 128  Bit Score: 68.69  E-value: 1.13e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   2 IQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEER----GASWIRF-----VFLARPTGGVLK 72
Cdd:cd04673    17 VRRGNPPDAGLWSFPGGKVELGETLEDAALRELREETGLEAEVVGLLTVVDVierdEAGRVRFhyvilDFLAEWVSGEPV 96
                          90
                  ....*....|....*.
gi 1339869093  73 TSKDAdsesLQAGWYP 88
Cdd:cd04673    97 AGDDA----LDARWFS 108
NUDIX_Hydrolase cd18879
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-104 1.43e-14

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467590 [Multi-domain]  Cd Length: 142  Bit Score: 68.77  E-value: 1.43e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERG---------ASWIRFVFLARPTGGvlkTSKDADSES 81
Cdd:cd18879    41 GRWTPVTGIVEPGEQPADAAVREVLEETGVDVEVERLASVGASPpvtypngdqCQYLDLTFRCRPVGG---EARVNDDES 117
                          90       100
                  ....*....|....*....|...
gi 1339869093  82 LQAGWYPRVSLPtPLRAHDVLHL 104
Cdd:cd18879   118 LEVGWFPVDALP-PMLPRFRRRI 139
NUDIX_Hydrolase cd04677
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-94 1.09e-13

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467560 [Multi-domain]  Cd Length: 137  Bit Score: 66.38  E-value: 1.09e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV---------EERG--ASWIRFVFLARPTGGVLKTSkdaDS 79
Cdd:cd04677    35 GDWGLPGGAMELGESLEETARREVFEETGLTVEELELLGVysgkdlyytYPNGdeVYNVTAVYLVRDVSGELKVD---DE 111
                          90
                  ....*....|....*
gi 1339869093  80 ESLQAGWYPRVSLPT 94
Cdd:cd04677   112 ESLELRFFSLDELPE 126
NUDIX_ADPRase cd04691
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
10-88 2.22e-13

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467573 [Multi-domain]  Cd Length: 122  Bit Score: 65.01  E-value: 2.22e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEER----GASWIRFVFLARPTGGVLKtskdADS-ESLQA 84
Cdd:cd04691    25 KGRWTLPGGFVEEGETLDEAIVREVLEETGIDAKPVGIIGVRSGvirdGKSDNYVVFLLEYVGGEPK----PDErENSEA 100

                  ....
gi 1339869093  85 GWYP 88
Cdd:cd04691   101 GFLT 104
NUDIX_ASFGF2_Nudt6 cd04670
Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC ...
1-88 2.56e-13

Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC 3.6.1.-), also known as nucleoside diphosphate-linked moiety X)) motif 6/Nudt6, and similar proteins including peroxisomal coenzyme A diphosphatase/Nudt7 and mitochondrial coenzyme A diphosphatase/Nudt8. The Nudt6 gene overlaps and lies on the opposite strand from FGF2 gene, and is thought to be the FGF2 antisense gene. The two genes are independently transcribed, and their expression shows an inverse relationship, suggesting that this antisense transcript may regulate FGF2 expression. This gene has also been shown to have hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF2 expression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467554 [Multi-domain]  Cd Length: 131  Bit Score: 65.25  E-value: 2.56e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEaKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEER-----GASWIRFVFLARPTGGvLKTSK 75
Cdd:cd04670    18 VVQE-KYGGPGGWKLPGGLVDPGEDIGEAAVREVFEETGIDTEFVSILGFRHQhpgrfGKSDLYFVCRLRPLSD-EEIKI 95
                          90
                  ....*....|...
gi 1339869093  76 DaDSESLQAGWYP 88
Cdd:cd04670    96 C-PEEIAEAKWMP 107
MutT COG0494
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ...
10-88 2.37e-11

8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms];


Pssm-ID: 440260 [Multi-domain]  Cd Length: 143  Bit Score: 60.05  E-value: 2.37e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIR--FVFLARPTGGVLKTSKDADSESLQAGWY 87
Cdd:COG0494    39 PGLWEFPGGKIEPGESPEEAALRELREETGLTAEDLELLGELPSPGYTDEkvHVFLARGLGPGEEVGLDDEDEFIEVRWV 118

                  .
gi 1339869093  88 P 88
Cdd:COG0494   119 P 119
NUDIX_MutT_Nudt1 cd04699
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
7-88 2.45e-10

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467579 [Multi-domain]  Cd Length: 118  Bit Score: 56.48  E-value: 2.45e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   7 RECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV------EERGASWIrfVFLARPTGGVLKTSkdadSE 80
Cdd:cd04699    22 RAGAGEWELPGGRLEPGESPEEALKREVKEETGLDVSVGELLDTwtfeldPDKGVFIV--TYLCRLVGGEVTLS----DE 95

                  ....*...
gi 1339869093  81 SLQAGWYP 88
Cdd:cd04699    96 HEEYEWVT 103
NUDIX_Hydrolase cd04680
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
13-93 3.92e-10

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467563 [Multi-domain]  Cd Length: 121  Bit Score: 56.10  E-value: 3.92e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  13 WYLPAGRMEPGETIVEAMQREVKEEAGL-LCEPVTLLSV-EERGASWIRFVFLARPTGGVLKTSKDADSESLQAGWYPRV 90
Cdd:cd04680    25 WYLPGGGVDKGETAEEAARRELREEAGVvLTGPPRLFGVyFNRRVSPRDHVALYRVREFEQTEPPEPNGEIAEAGFFALD 104

                  ...
gi 1339869093  91 SLP 93
Cdd:cd04680   105 ALP 107
NUDIX_MutT_Nudt1 cd18886
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
1-76 6.82e-10

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467596 [Multi-domain]  Cd Length: 147  Bit Score: 56.09  E-value: 6.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTL-----LSVEERGASWIRFVFLARPTGGVLKTSK 75
Cdd:cd18886    15 LLNRNKKPNMGKWNGVGGKLEPGESPEECAIREVFEETGLELEDLQLrgivtFPSFDGGEDWLMYVFLAEAFSGELVESD 94

                  .
gi 1339869093  76 D 76
Cdd:cd18886    95 R 95
NUDIX_Hydrolase cd03675
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
16-97 8.47e-10

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Nitrosomonas europaea, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467543 [Multi-domain]  Cd Length: 138  Bit Score: 55.61  E-value: 8.47e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  16 PAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV-----EERGASWIRFVFLARPTGgvLKTSKDADSESLQAGWYPR- 89
Cdd:cd03675    29 PAGHLEPGESLLEAAIRETLEETGWEVEPTALLGIyqwtaPDNGVTYLRFAFAGELLE--HLPDQPLDSGIIRAHWLTLe 106
                          90
                  ....*....|
gi 1339869093  90 --VSLPTPLR 97
Cdd:cd03675   107 eiLALQARLR 116
NUDIX_MutT_Nudt1 cd04679
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
1-96 1.22e-09

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467562 [Multi-domain]  Cd Length: 126  Bit Score: 55.01  E-value: 1.22e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV-----EERGASWIRFVFLAR-PTGGVLKTS 74
Cdd:cd04679    17 LVLRLRAPEAGHWGLPGGKVDWLETVEDAVRREILEELGLEIELTRLLCVvdqidAADGEHWVAPVYLAEiFSGEPRLME 96
                          90       100
                  ....*....|....*....|..
gi 1339869093  75 KDADSEslqAGWYPRVSLPTPL 96
Cdd:cd04679    97 PEKHGG---IGWFALDALPQPL 115
NUDIX_Hydrolase cd04676
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-96 1.45e-09

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467559 [Multi-domain]  Cd Length: 144  Bit Score: 55.10  E-value: 1.45e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV---EERG--------ASWIRFVFLARPTGGVLKTskdADS 79
Cdd:cd04676    40 GLWSLPAGAIEPGEHPAEAVIREVREETGLLVKPTRLLGVfggKEFRytypngdqVEYTVIAFKCVVTGGTLNA---IDG 116
                          90       100
                  ....*....|....*....|..
gi 1339869093  80 ESLQAGWY-----PRVSLPTPL 96
Cdd:cd04676   117 ETSELRYFsrtqmPTLALPYPD 138
NUDIX_ADPRase cd18880
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
10-88 1.98e-09

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467591 [Multi-domain]  Cd Length: 126  Bit Score: 54.46  E-value: 1.98e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  10 RGTWY-LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEE-----RGASWIRFVFLARPTGGVLKTSKDADSESLQ 83
Cdd:cd18880    23 GGIFYiLPGGGQEHGETLPEALKRECLEETGLDVEVGDLLFVREyigpnKPVHQVELFFLCTLEGGELTLGSDPDLNQVG 102

                  ....*
gi 1339869093  84 AGWYP 88
Cdd:cd18880   103 VEWIP 107
NUDIX_Hydrolase cd04683
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
9-100 4.26e-09

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467566 [Multi-domain]  Cd Length: 137  Bit Score: 53.76  E-value: 4.26e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   9 CRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEP--VTLLSVEER----GASWIRFVFLARPTGGVLKTSKDADSESL 82
Cdd:cd04683    24 DDGWWHLPAGHVEAGETVRAAAVREAKEELGVEIDPedLRLVHTMHRrsdgGRERIDFFFRATRWSGEPRNREPDKCAEL 103
                          90
                  ....*....|....*...
gi 1339869093  83 QagWYPRVSLPTPLRAHD 100
Cdd:cd04683   104 R--WFPLDALPENTVPYV 119
NUDIX_Hydrolase cd04511
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
9-50 1.12e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467545 [Multi-domain]  Cd Length: 123  Bit Score: 52.19  E-value: 1.12e-08
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1339869093   9 CRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV 50
Cdd:cd04511    25 RKGYWTLPAGFMELGETTEQGAARETREEAGARVEIGSLYAV 66
NUDIX_Hydrolase cd04688
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
13-89 1.33e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467570 [Multi-domain]  Cd Length: 130  Bit Score: 52.17  E-value: 1.33e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  13 WYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEE-----RGASW--IRFVFLARPTGGVLKTSKD----ADSES 81
Cdd:cd04688    26 YRLPGGRVEFGETSEDALVREFKEELGVEVEVVRLLFVVEnfftyDGKPFheIGFYYLVELSDEALYEQDIffleEDGEK 105

                  ....*...
gi 1339869093  82 LQAGWYPR 89
Cdd:cd04688   106 LEFRWIPL 113
NUDIX_MTH2_Nudt15 cd04678
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ...
10-69 1.52e-08

MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467561 [Multi-domain]  Cd Length: 128  Bit Score: 51.79  E-value: 1.52e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV-----EERGASWIRFVFLARPTGG 69
Cdd:cd04678    27 AGTWALPGGHLEFGESFEECAAREVLEETGLEIRNVRFLTVtndvfEEEGKHYVTIFVLAEVDDG 91
NUDIX_Hydrolase cd18875
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
2-74 2.32e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467587 [Multi-domain]  Cd Length: 144  Bit Score: 51.80  E-value: 2.32e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1339869093   2 IQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV----EERGASWIRFVFLARPTGGVLKTS 74
Cdd:cd18875    18 VLDRVKKDWGGYTFPGGHVEPGESFVDSVIREVKEETGLTIKNPELCGIkqwiNPDGERYIVFLYKTDHFSGELLSS 94
NUDIX_Ap6A_hydrolase cd03673
diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a ...
6-88 6.81e-08

diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a member of the NUDIX hydrolase superfamily. Ap6A hydrolase specifically hydrolyzes diadenosine polyphosphates, but not ATP or diadenosine triphosphate, and it generates ATP as the product. Ap6A, the most preferred substrate, hydrolyzes to produce two ATP molecules, which is a novel hydrolysis mode for Ap6A. These results indicate that Ap6A hydrolase is a diadenosine polyphosphate hydrolase. It requires the presence of a divalent cation, such as Mn2+, Mg2+, Zn2+, and Co2+, for activity. Members of the NUDIX hydrolase superfamily are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site.


Pssm-ID: 467541 [Multi-domain]  Cd Length: 131  Bit Score: 50.24  E-value: 6.81e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   6 KRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL-----SVEERGASWIRFV--FLARPTGGVLKTSKDAD 78
Cdd:cd03673    22 HRPRYDDWSLPKGKLEPGETPEEAAVREVEEETGLRVRLGRPLgttryTYTRKGKGILKKVhyWLMRALGGEFLPQPEEE 101
                          90
                  ....*....|
gi 1339869093  79 SEslQAGWYP 88
Cdd:cd03673   102 ID--EVRWLP 109
NUDIX_ADPRase cd18889
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ...
7-97 7.74e-08

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467599 [Multi-domain]  Cd Length: 127  Bit Score: 49.92  E-value: 7.74e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   7 RECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGA--------SWIRFVFLARPTGGVLKtskdAD 78
Cdd:cd18889    19 QEKDGRWSLPGGWVDVNQSIKENTIKEAKEEAGLDVEPKRIIAVLDRNKhnkppyayGIYKIFVLCELLGGEFQ----PN 94
                          90
                  ....*....|....*....
gi 1339869093  79 SESLQAGWYPRVSLPtPLR 97
Cdd:cd18889    95 IETIESGYFSLDELP-PLS 112
NUDIX_RppH cd04665
RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of ...
10-39 1.44e-07

RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the NUDIX family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a NUDIX protein called RNA pyrophosphohydrolase (RppH), allowing access to both endo- and 5' exoribonucleases. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467550 [Multi-domain]  Cd Length: 121  Bit Score: 49.17  E-value: 1.44e-07
                          10        20        30
                  ....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:cd04665    21 RRGWEFPGGKREPGETIEEAARRELYEETG 50
NUDIX_CDP-Chase_like cd04672
CDP-Choline Pyrophosphatase and similar proteins; Members include: CDP-Choline Pyrophosphatase, ...
11-102 1.80e-07

CDP-Choline Pyrophosphatase and similar proteins; Members include: CDP-Choline Pyrophosphatase, ADP-ribose pyrophosphatase, and UDP-X diphosphatase. CDP-choline pyrophosphatase catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. ADP-ribose pyrophosphatase catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. UDP-X diphosphatase hydrolyzes UDP-N-acetylmuramic acid and UDP-N-acetylmuramoyl-L-alanine. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467556 [Multi-domain]  Cd Length: 128  Bit Score: 48.71  E-value: 1.80e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEER----GASWIR----FVFLARPTGGVLKTSkdadSESL 82
Cdd:cd04672    24 GRWTLPGGWADVGLSPAENAVKEVREESGYEVRARKLLAVFDRnkggHPPSPFhvykLFFLCELIGGEAQTS----IETS 99
                          90       100
                  ....*....|....*....|
gi 1339869093  83 QAGWYPRVSLPtPLRAHDVL 102
Cdd:cd04672   100 EVGFFALDDLP-PLSLGRVT 118
NUDIX_MTH1_Nudt1 cd03427
MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside ...
10-66 2.20e-07

MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside diphosphate-linked moiety X)) motif 1 (Nudt1), is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467533 [Multi-domain]  Cd Length: 136  Bit Score: 48.68  E-value: 2.20e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLlcepvTLLSVEERGAswIRFVFLARP 66
Cdd:cd03427    26 AGKWNGFGGKVEPGETIEEAAVRELEEEAGL-----TATELEKVGR--LKFEFPDDP 75
NUDIX_NADH_pyrophosphatase_Nudt13 cd03429
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ...
15-95 3.58e-07

NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer.


Pssm-ID: 467535 [Multi-domain]  Cd Length: 126  Bit Score: 47.87  E-value: 3.58e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEergaSW-----IRFVFLARPTGGVLktsKDADSESLQAGWYPR 89
Cdd:cd03429    30 LLAGFVEPGETLEEAVRREVKEEVGLRVKNVRYVGSQ----PWpfpssLMLGFTAEADSGEI---TVDDDELEDARWFSR 102
                          90
                  ....*....|..
gi 1339869093  90 ------VSLPTP 95
Cdd:cd03429   103 delpeaLFLPPP 114
NUDIX_Hydrolase cd18882
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-65 3.76e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467593 [Multi-domain]  Cd Length: 130  Bit Score: 48.02  E-value: 3.76e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLS--VEERGASWIRFVFLAR 65
Cdd:cd18882    30 GYWGLFGGHLEPGETPEEAIRRELEEEIGYEPGEFRFFLlyTEDDGEDRIRHVFHAP 86
NUDIX_Hydrolase cd04690
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
10-47 7.91e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467572 [Multi-domain]  Cd Length: 123  Bit Score: 47.14  E-value: 7.91e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1339869093  10 RGT--WYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTL 47
Cdd:cd04690    20 RGTdaFYLPGGKREPGETPLQALVRELKEELGLDLDPDSL 59
NUDIX_Hydrolase cd04686
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-40 1.14e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467569 [Multi-domain]  Cd Length: 130  Bit Score: 46.52  E-value: 1.14e-06
                          10        20        30
                  ....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd04686    26 GRYDLPGGSQEFGESLEDALKREFAEETGM 55
NUDIX_Hydrolase cd18874
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
10-52 1.29e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467586 [Multi-domain]  Cd Length: 125  Bit Score: 46.51  E-value: 1.29e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEE 52
Cdd:cd18874    25 NDLYGIPGGKVEWGETLEEALKREVKEETGLDITDIRFILVQE 67
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 cd03424
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ...
12-48 1.60e-06

ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467530 [Multi-domain]  Cd Length: 134  Bit Score: 46.35  E-value: 1.60e-06
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1339869093  12 TWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:cd03424    30 LLELPAGKIDPGEDPEEAARRELEEETGYTAGDLELL 66
NUDIX_Hydrolase cd03674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-101 1.88e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467542 [Multi-domain]  Cd Length: 130  Bit Score: 46.10  E-value: 1.88e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV-------------EERGASW-IRFVFLARPTGGVLKTSKD 76
Cdd:cd03674    25 GRWLQPGGHVEPDEDPLEAALREAREETGLDVELLSPLSPdpldidvhpipanPGEPAHLhLDVRYLAVADGDEALRKSD 104
                          90       100
                  ....*....|....*....|....*
gi 1339869093  77 adsESLQAGWYPRVSLPTPLRAHDV 101
Cdd:cd03674   105 ---ESSDVRWFPLDELEELSMDPNL 126
NUDIX_CDP-Chase cd18890
CDP-choline pyrophosphatase; CDP-choline pyrophosphatase catalyzes the hydrolysis of ...
5-93 2.99e-06

CDP-choline pyrophosphatase; CDP-choline pyrophosphatase catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467600 [Multi-domain]  Cd Length: 129  Bit Score: 45.49  E-value: 2.99e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   5 AKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEER-------GASWI-RFVFLARPTGGVLKTSkd 76
Cdd:cd18890    19 VKEKEDGKWTLPGGWADVGYTPTEVAAKEVEEETGLEVSPKKLLAILDKrkhphppQPTYVyKLFILCEIEGGELKPS-- 96
                          90
                  ....*....|....*..
gi 1339869093  77 adSESLQAGWYPRVSLP 93
Cdd:cd18890    97 --FETGEVRFFSENELP 111
NUDIX_Ap4A_Nudt2 cd03428
diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX ...
11-40 3.13e-06

diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX (nucleoside diphosphate-linked moiety X)) motif 2/Nudt2, is a member of the NUDIX hydrolase superfamily. Ap4A hydrolases are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one subfamily and fungi/animals/archaea enzymes, represented by this subfamily, fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val) that functions as a metal binding and catalytic site, and a required divalent cation, Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variation. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies.


Pssm-ID: 467534 [Multi-domain]  Cd Length: 132  Bit Score: 45.62  E-value: 3.13e-06
                          10        20        30
                  ....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd03428    28 GHWDFPKGHVEPGESELETALRETKEETGL 57
PRK15472 PRK15472
nucleoside triphosphatase NudI; Provisional
11-39 3.88e-06

nucleoside triphosphatase NudI; Provisional


Pssm-ID: 185369 [Multi-domain]  Cd Length: 141  Bit Score: 45.51  E-value: 3.88e-06
                          10        20
                  ....*....|....*....|....*....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:PRK15472   31 GQWALSGGGVEPGERIEEALRREIREELG 59
NUDIX_Hydrolase cd04667
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
7-65 4.46e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467552 [Multi-domain]  Cd Length: 117  Bit Score: 44.58  E-value: 4.46e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1339869093   7 RECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSvEERGASWIRFVFLAR 65
Cdd:cd04667    17 ARRGGRWLLPGGKIEPGESPLEAAIRELKEETGLAALSLLYLF-EHEGPHKLHHVFLAE 74
nudE PRK11762
adenosine nucleotide hydrolase NudE; Provisional
15-48 5.06e-06

adenosine nucleotide hydrolase NudE; Provisional


Pssm-ID: 183303  Cd Length: 185  Bit Score: 45.95  E-value: 5.06e-06
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:PRK11762   78 FPKGLIDPGETPLEAANRELKEEVGFGARQLTFL 111
PRK00714 PRK00714
RNA pyrophosphohydrolase; Reviewed
13-70 6.47e-06

RNA pyrophosphohydrolase; Reviewed


Pssm-ID: 234820 [Multi-domain]  Cd Length: 156  Bit Score: 45.15  E-value: 6.47e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1339869093  13 WYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSvEERGasWIRFVF---LARPTGGV 70
Cdd:PRK00714   34 WQFPQGGIDPGETPEQAMYRELYEEVGLRPEDVEILA-ETRD--WLRYDLpkrLVRRSKGV 91
NUDIX_NadM_like cd18873
bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; ...
1-100 7.56e-06

bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) and an ADP-ribose pyrophosphatase (ADPRase) domain. NMNAT was initially identified as an NAD+ synthase that catalyzes the reversible conversion of NMN to NAD+ in the final step of both the de novo biosynthesis and salvage pathways in most organisms across all three kingdoms of life ADPRase is a member of the NUDIX family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). Additional members in this cd include bacterial transcriptional regulator, NrtR, which represses the transcription of NAD biosynthetic genes in vitro and adenosine diphosphate ribose (ADPR), as well as NadQ, a NUDIX-like ATP-responsive regulator of NAD biosynthesis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, U=I, L or V) which functions as metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467585 [Multi-domain]  Cd Length: 132  Bit Score: 44.46  E-value: 7.56e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093   1 MIQEAKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV--------EERGASwIRFVFLARPTGGVLK 72
Cdd:cd18873    21 LIKRKNEPFKGGWALPGGFVREDETLEDAARRELREETGLKDIYLEQLGTfgdpdrdpRGRVIS-VAYLALVPEEDLAPK 99
                          90       100
                  ....*....|....*....|....*...
gi 1339869093  73 TSKDADseslQAGWYPRVSLPTPLrAHD 100
Cdd:cd18873   100 AGDDAA----EARWFPVDELLPPL-AFD 122
PRK05379 PRK05379
bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase;
10-88 8.48e-06

bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase;


Pssm-ID: 235436 [Multi-domain]  Cd Length: 340  Bit Score: 46.16  E-value: 8.48e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGL-LCEPVTLLSVEER------GASW----IRFVFLARPTGGVL---KTSK 75
Cdd:PRK05379  227 KGLWALPGGFLEQDETLLDACLRELREETGLkLPEPVLRGSIRDQqvfdhpGRSLrgrtITHAFLFEFPAGELprvKGGD 306
                          90
                  ....*....|...
gi 1339869093  76 DADseslQAGWYP 88
Cdd:PRK05379  307 DAD----KARWVP 315
NUDIX_DHNTPase_like cd04664
dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of ...
11-50 1.18e-05

dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of dihydroneopterin triphosphate (DHNTP) to dihydroneopterin monophosphate (DHNMP) and pyrophosphate,the second step in the pterin branch of the folate synthesis pathway in bacteria. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467549 [Multi-domain]  Cd Length: 132  Bit Score: 43.78  E-value: 1.18e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV 50
Cdd:cd04664    26 GFWQSVTGGIEDGETPWQAALRELKEETGLDPLELQLIDL 65
NUDIX_Nudt17 cd04694
nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) ...
11-50 1.26e-05

nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) motif 17 (EC 3.6.1.-) encoded by the NUDT17 gene on chromosome 1q21.1 and encodes an enzyme thought to hydrolyse some nucleoside diphosphate derivatives. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467576 [Multi-domain]  Cd Length: 135  Bit Score: 43.82  E-value: 1.26e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV 50
Cdd:cd04694    30 GVWVPPGGHVELGESLLEAGLRELQEETGLEVSDIQSLSL 69
NUDIX_Hydrolase cd04681
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
10-48 1.78e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467564 [Multi-domain]  Cd Length: 135  Bit Score: 43.33  E-value: 1.78e-05
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:cd04681    30 KGKLDLPGGFVDPGESAEEALRRELREELGLKIPKLRYL 68
NUDIX_DR1025_like cd04700
DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX ...
11-69 1.97e-05

DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX hydrolase superfamily, show nucleoside triphosphatase and dinucleoside polyphosphate pyrophosphatase activities. Like other enzymes belonging to this superfamily, it requires a divalent cation, in this case Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. In general, substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467580 [Multi-domain]  Cd Length: 147  Bit Score: 43.36  E-value: 1.97e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPV----TLLSVEERGASWIRFVFLARPTGG 69
Cdd:cd04700    43 GLWHIPSGAVEDGENPQDAAVREACEETGLRVRLVkflgAYLGRFPDGVLVLRHVWLAEPEPG 105
PLN02325 PLN02325
nudix hydrolase
11-96 2.48e-05

nudix hydrolase


Pssm-ID: 215184 [Multi-domain]  Cd Length: 144  Bit Score: 43.31  E-value: 2.48e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERgaswirfVFLARPTGG----VLKTSKDADSESLQA-- 84
Cdd:PLN02325   34 STFALPGGHLEFGESFEECAAREVKEETGLEIEKIELLTVTNN-------VFLEEPKPShyvtVFMRAVLADPSQVPQnl 106
                          90       100
                  ....*....|....*....|
gi 1339869093  85 --------GWYPRVSLPTPL 96
Cdd:PLN02325  107 epekcygwDWYEWDNLPEPL 126
NUDIX_ADPRase_NudE cd24156
NUDIX domain family NudE found in Escherichia coli, and similar proteins; The adenosine ...
15-48 4.64e-05

NUDIX domain family NudE found in Escherichia coli, and similar proteins; The adenosine nucleotide hydrolase NudE protein in Escherichia coli is a NUDIX hydrolase family member active against ADP ribose, NADH, AP2A and AP3A33, and is classified as a hydrolase (E.C. 3.6.1.-) based on gene annotations. It is an ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467604 [Multi-domain]  Cd Length: 134  Bit Score: 42.23  E-value: 4.64e-05
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:cd24156    33 FPKGLIDPGETPEEAANRELKEEIGFGARQLTLL 66
NUDIX_ADPRase cd24155
Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ...
15-40 5.30e-05

Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467603 [Multi-domain]  Cd Length: 187  Bit Score: 42.90  E-value: 5.30e-05
                          10        20
                  ....*....|....*....|....*.
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd24155    80 IVAGMIDAGETPEDVARREAEEEAGL 105
NUDIX_Ap4A_hydrolase_plant_like cd03671
plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine ...
11-62 5.54e-05

plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine tetraphosphate (Ap4A) hydrolase is a member of the NUDIX hydrolase superfamily. Members of this family are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one group (represented by this subfamily) and fungi/animals/archaea enzymes fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for the inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU where U is Ile, Leu, or Val), Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variations. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies.


Pssm-ID: 467539 [Multi-domain]  Cd Length: 147  Bit Score: 42.17  E-value: 5.54e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERgasWIRFVF 62
Cdd:cd03671    27 GAWQFPQGGIDEGEDPEEAALRELYEETGLSPEDVEIIAETPD---WLTYDL 75
NUDIX_Hydrolase cd18876
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
10-85 5.88e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467588 [Multi-domain]  Cd Length: 121  Bit Score: 41.42  E-value: 5.88e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVE-----ERGASWIRFVFLarptGGVLkTSKDADSESLQA 84
Cdd:cd18876    22 KDGWELPGGVVEAGESPLQAARREVREELGLDVPVGRLLAVDwvppaGGGDDAVLFVFD----GGVL-TPEQAAAIRLQD 96

                  .
gi 1339869093  85 G 85
Cdd:cd18876    97 E 97
NUDIX_Hydrolase cd04669
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
13-101 6.36e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467553 [Multi-domain]  Cd Length: 120  Bit Score: 41.57  E-value: 6.36e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1339869093  13 WYLPAGRMEPGETIVEAMQREVKEEAGlLCEPVTLLS--VEERGASwIRFVFLARPTGGVLKTSKDADSESLQAGWYPRV 90
Cdd:cd04669    26 YVFPGGGIEPGETPEEAALREAVEELG-LDVAVTLITliLRVLNDG-TQHYFLARVITGSFGLGTGPEFERPERGTYEPV 103
                          90
                  ....*....|..
gi 1339869093  91 SLP-TPLRAHDV 101
Cdd:cd04669   104 WVPlTALPALNL 115
NUDIX_Hydrolase cd04663
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
15-48 1.22e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467548 [Multi-domain]  Cd Length: 132  Bit Score: 41.13  E-value: 1.22e-04
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:cd04663    30 VPKGTVEPGESPEEAALRELAEETGLTGARVVVD 63
NUDIX_Hydrolase cd04692
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
17-65 1.24e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467574 [Multi-domain]  Cd Length: 142  Bit Score: 41.00  E-value: 1.24e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1339869093  17 AGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIRFVFLAR 65
Cdd:cd04692    62 AGHIDAGETYEEAAVRELEEELGLTVSPEDLIFLGVIREEVIGGDFIDN 110
NUDIX_MutT_NudA_like cd03425
MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase ...
5-72 1.37e-04

MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase that catalyzes the hydrolysis of nucleoside and deoxynucleoside triphosphates (NTPs and dNTPs) by substitution at a beta-phosphorus to yield a nucleotide monophosphate (NMP) and inorganic pyrophosphate (PPi). This enzyme requires two divalent cations for activity; one coordinates the phosphoryl groups of the NTP/dNTP substrate, and the other coordinates to the enzyme. It also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as metal binding and catalytic site. MutT pyrophosphohydrolase is important in preventing errors in DNA replication by hydrolyzing mutagenic nucleotides such as 8-oxo-dGTP (a product of oxidative damage), which can mispair with template adenine during DNA replication, to guanine nucleotides.


Pssm-ID: 467531 [Multi-domain]  Cd Length: 123  Bit Score: 40.51  E-value: 1.37e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1339869093   5 AKRECRGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERGASWIR---FVFLARPTGGVLK 72
Cdd:cd03425    21 EGKHLAGLWEFPGGKVEPGETPEQALVRELREELGIEVEVGEPLGTVEHDYPDFHvrlHVYLCTLWSGEPQ 91
NPY1 COG2816
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];
15-40 1.40e-04

NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];


Pssm-ID: 442065 [Multi-domain]  Cd Length: 288  Bit Score: 42.21  E-value: 1.40e-04
                          10        20
                  ....*....|....*....|....*.
gi 1339869093  15 LPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:COG2816   186 LLAGFVEPGETLEQAVRREVFEEVGV 211
NUDIX_ADPRase_Ndx2 cd24161
NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose ...
12-65 1.47e-04

NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose pyrophosphatase (ADPRase) as well as flavin adenine dinucleotide (FAD) activity. ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity.Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467609 [Multi-domain]  Cd Length: 137  Bit Score: 40.62  E-value: 1.47e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1339869093  12 TWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLS--------VEERGaswirFVFLAR 65
Cdd:cd24161    31 SWEIPAGGWPEGEDPEEAARRELREETGLRAERWTPLGrfypsngvSDERA-----HVFLAT 87
NUDIX_Hydrolase cd04674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
10-44 1.60e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467558 [Multi-domain]  Cd Length: 118  Bit Score: 40.52  E-value: 1.60e-04
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEP 44
Cdd:cd04674    28 HGELALPGGYIEYGETWQEAAVRELREETGVEADA 62
PRK10546 PRK10546
pyrimidine (deoxy)nucleoside triphosphate diphosphatase;
11-44 1.71e-04

pyrimidine (deoxy)nucleoside triphosphate diphosphatase;


Pssm-ID: 182536 [Multi-domain]  Cd Length: 135  Bit Score: 40.50  E-value: 1.71e-04
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEP 44
Cdd:PRK10546   30 GLWEFAGGKVEPGESQPQALIRELREELGIEATV 63
NUDIX_NudI cd04696
NUDIX hydrolase subfamily; Nucleoside triphosphatase NudI catalyzes the hydrolysis of ...
11-39 1.77e-04

NUDIX hydrolase subfamily; Nucleoside triphosphatase NudI catalyzes the hydrolysis of nucleoside triphosphates, with a preference for pyrimidine deoxynucleoside triphosphates (dUTP, dTTP and dCTP). It is a members of the NUDIX hydrolase superfamily which catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467577 [Multi-domain]  Cd Length: 134  Bit Score: 40.69  E-value: 1.77e-04
                          10        20
                  ....*....|....*....|....*....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:cd04696    29 GQWALSGGGVEPGERIEEALRREIREELG 57
NUDIX_Hydrolase cd18877
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-88 1.93e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467589 [Multi-domain]  Cd Length: 141  Bit Score: 40.42  E-value: 1.93e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL-SVEERGASWIRFVFLARPTGGVLKTSKDADSESLQagWYP 88
Cdd:cd18877    47 GTWALPGGARDSGETPEAAALRETEEETGLDADTLRVVgTHVDDHGGWSYTTVLASAPEPLPVRPANEESVELR--WVP 123
NUDIX_MutT_Nudt1 cd18883
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
8-54 2.35e-04

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467594  Cd Length: 136  Bit Score: 40.14  E-value: 2.35e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1339869093   8 ECRGT--WYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEERG 54
Cdd:cd18883    17 RVKGDdkTFLPGGHIEIGESAEIALVRELREELGLSCKVGRYLGAVENQ 65
NUDIX_UDP-X_diphosphatase cd18891
UDP-X diphosphatase; UDP-X diphosphatase hydrolyzes UDP-N-acetylmuramic acid and ...
11-50 9.85e-04

UDP-X diphosphatase; UDP-X diphosphatase hydrolyzes UDP-N-acetylmuramic acid and UDP-N-acetylmuramoyl-L-alanine, the last step of the Mur pathway of peptidoglycan biosynthesis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467601 [Multi-domain]  Cd Length: 128  Bit Score: 38.14  E-value: 9.85e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV 50
Cdd:cd18891    24 KEWALPGGFAEVGLSPKENILKEVKEETGLHVEVERLLAV 63
NUDIX_Hydrolase cd18884
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
12-50 1.03e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467595 [Multi-domain]  Cd Length: 125  Bit Score: 38.16  E-value: 1.03e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1339869093  12 TWY-LPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSV 50
Cdd:cd18884    33 GWYgLVTGFLEAGESPEEAVLREVKEELGLDGHEAKFIGH 72
PRK10776 PRK10776
8-oxo-dGTP diphosphatase MutT;
11-52 1.04e-03

8-oxo-dGTP diphosphatase MutT;


Pssm-ID: 182721 [Multi-domain]  Cd Length: 129  Bit Score: 38.04  E-value: 1.04e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLLSVEE 52
Cdd:PRK10776   31 GKWEFPGGKIEAGETPEQALIRELQEEVGITVQHATLFEKLE 72
NUDIX_Hydrolase cd04685
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
13-48 1.59e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467568 [Multi-domain]  Cd Length: 138  Bit Score: 37.94  E-value: 1.59e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1339869093  13 WYLPAGRMEPGETIVEAMQREVKEEAGLLCEPVTLL 48
Cdd:cd04685    30 WFTPGGGVEPGESPEQAAVRELREETGLRLEPDDLG 65
NUDIX_DIPP2_like_Nudt4 cd04666
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ...
10-40 1.80e-03

diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467551 [Multi-domain]  Cd Length: 128  Bit Score: 37.51  E-value: 1.80e-03
                          10        20        30
                  ....*....|....*....|....*....|.
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd04666    25 TGRWILPKGGPEKGETPAEAAAREAWEEAGV 55
NUDIX_Hydrolase cd04684
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
10-39 2.43e-03

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Enterococcus faecalis, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467567 [Multi-domain]  Cd Length: 140  Bit Score: 37.22  E-value: 2.43e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:cd04684    36 NGGYFLPGGGIEPGETPEEALHREVLEETG 65
NUDIX_ADPRase_Nudt5 cd18888
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) (also known as NUDIX ...
12-39 3.57e-03

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) (also known as NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity.


Pssm-ID: 467598 [Multi-domain]  Cd Length: 149  Bit Score: 37.08  E-value: 3.57e-03
                          10        20
                  ....*....|....*....|....*...
gi 1339869093  12 TWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:cd18888    34 TIEFPAGLVDPGESPEQAALRELKEETG 61
NUDIX_GDPMH_NudD cd03430
GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose ...
10-40 3.62e-03

GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose mannosyl hydrolase/GDPMH, is a member of the NUDIX hydrolase superfamily. This class of enzymes is unique from other members of the superfamily in two aspects. First, it contains a modified NUDIX signature sequence. The slight changes to the conserved sequence motif, GX5EX7REUXEEXGU, where U = I, L or V), are believed to contribute to the removal of all magnesium binding sites but one, retaining only the metal site that coordinates the pyrophosphate of the substrate. Secondly, it is not a pyrophosphatase that substitutes at a phosphorus; instead, it hydrolyzes nucleotide sugars such as GDP-mannose to GDP and mannose, cleaving the phosphoglycosyl bond by substituting at a carbon position. GDP-mannose provides mannosyl components for cell wall synthesis and is required for the synthesis of other glycosyl donors (such as GDP-fucose and colitose) for the cell wall. The importance of GDP-sugar hydrolase activities is thus closely related to the regulation of cell wall biosynthesis. Enzymes in this family are believed to regulate the concentration of GDP-mannose and GDP-glucose in the bacterial cell wall.


Pssm-ID: 467536 [Multi-domain]  Cd Length: 146  Bit Score: 36.84  E-value: 3.62e-03
                          10        20        30
                  ....*....|....*....|....*....|.
gi 1339869093  10 RGTWYLPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd03430    40 QGYWFVPGGRILKNETLDDAFKRIAREELGL 70
PRK08999 PRK08999
Nudix family hydrolase;
11-39 3.64e-03

Nudix family hydrolase;


Pssm-ID: 236361 [Multi-domain]  Cd Length: 312  Bit Score: 37.93  E-value: 3.64e-03
                          10        20
                  ....*....|....*....|....*....
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAG 39
Cdd:PRK08999   32 GLWEFPGGKVEPGETVEQALARELQEELG 60
NUDIX_Hydrolase cd04682
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-40 3.96e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467565 [Multi-domain]  Cd Length: 123  Bit Score: 36.50  E-value: 3.96e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 1339869093  11 GTWYLPAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd04682    28 NLWDLPGGGREGDETPFACVLRELREELGL 57
NUDIX_ADPRase cd24160
Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ...
12-49 4.07e-03

Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) such as found in extreme thermophile Thermus thermophilus (TtADPRase) catalyzes the hydrolysis of ADPR to AMP and ribose 5'-phosphate in the presence of Mg2+ and Zn2+ ions. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467608 [Multi-domain]  Cd Length: 151  Bit Score: 36.71  E-value: 4.07e-03
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1339869093  12 TWYLPAGRMEPGETIVEAMQREVKEEAGLLCEpVTLLS 49
Cdd:cd24160    48 TLEIPAGLIDPGETPEEAARRELAEETGLSGD-LTYLT 84
NUDIX_Tnr3_like cd03676
thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a ...
17-70 5.89e-03

thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a bifunctional enzyme composed of a C-terminal thiamine pyrophosphokinase domain, which transfers pyrophosphate from ATP to thiamine and an N-terminal NUDIX hydrolase domain that converts oxidized derivatives of thiamine diphosphate (oxothiamine and oxythiamine) to their respective monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467544  Cd Length: 153  Bit Score: 36.32  E-value: 5.89e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1339869093  17 AGRMEPGETIVEAMQREVKEEAGLlcePVTLLSVEERGASWIRFVFLaRPTGGV 70
Cdd:cd03676    44 AGGVPAGESPLETLVREAEEEAGL---PEDLARQARPAAGRVSYFYR-SDEGGL 93
NUDIX_Hydrolase cd04693
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
11-40 8.31e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467575 [Multi-domain]  Cd Length: 157  Bit Score: 35.97  E-value: 8.31e-03
                          10        20        30
                  ....*....|....*....|....*....|.
gi 1339869093  11 GTWYL-PAGRMEPGETIVEAMQREVKEEAGL 40
Cdd:cd04693    57 GMWEAsTGGSVLAGETSLEAAIRELKEELGI 87
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH