NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|50510641|dbj|BAD32306|]
View 

mKIAA0793 protein, partial [Mus musculus]

Protein Classification

PH2_FARP1-like domain-containing protein( domain architecture ID 10192499)

PH2_FARP1-like domain-containing protein

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
50-147 1.94e-69

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270055  Cd Length: 98  Bit Score: 206.02  E-value: 1.94e-69
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  50 VENQLSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKLQFKSHVYFFR 129
Cdd:cd13235   1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                        90
                ....*....|....*...
gi 50510641 130 AESKYTFERWIDVIKRAS 147
Cdd:cd13235  81 AESEYTFERWMEVIRSAT 98
 
Name Accession Description Interval E-value
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
50-147 1.94e-69

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 206.02  E-value: 1.94e-69
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  50 VENQLSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKLQFKSHVYFFR 129
Cdd:cd13235   1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                        90
                ....*....|....*...
gi 50510641 130 AESKYTFERWIDVIKRAS 147
Cdd:cd13235  81 AESEYTFERWMEVIRSAT 98
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
54-148 4.88e-17

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 72.58  E-value: 4.88e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641     54 LSGYLLRKFKNSN-GWQKLWVVFTNFCLFFYKTHQDDY---PLASLPLLGYSVSLPREADSIHKDYVFKLQFKS-HVYFF 128
Cdd:smart00233   3 KEGWLYKKSGGGKkSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDrKTLLL 82
                           90       100
                   ....*....|....*....|
gi 50510641    129 RAESKYTFERWIDVIKRASS 148
Cdd:smart00233  83 QAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
55-148 2.82e-13

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 62.97  E-value: 2.82e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641    55 SGYLLRKFK-NSNGWQKLWVVFTNFCLFFYK---THQDDYPLASLPLLGYSVSLPREADSIHKDYVFKL----QFKSHVY 126
Cdd:pfam00169   4 EGWLLKKGGgKKKSWKKRYFVLFDGSLLYYKddkSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRTGKRTY 83
                          90       100
                  ....*....|....*....|..
gi 50510641   127 FFRAESKYTFERWIDVIKRASS 148
Cdd:pfam00169  84 LLQAESEEERKDWIKAIQSAIR 105
 
Name Accession Description Interval E-value
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
50-147 1.94e-69

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 206.02  E-value: 1.94e-69
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  50 VENQLSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKLQFKSHVYFFR 129
Cdd:cd13235   1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                        90
                ....*....|....*...
gi 50510641 130 AESKYTFERWIDVIKRAS 147
Cdd:cd13235  81 AESEYTFERWMEVIRSAT 98
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
54-143 1.29e-17

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 73.60  E-value: 1.29e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKLQFKSHVYF-FRAES 132
Cdd:cd13237   1 MSGYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDESFEEDESLVFQLLHKGQLPIiFRADD 80
                        90
                ....*....|.
gi 50510641 133 KYTFERWIDVI 143
Cdd:cd13237  81 AETAQRWIEAL 91
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
54-147 1.32e-17

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 74.23  E-value: 1.32e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRK----FKNsngWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKL-QFKSHVYFF 128
Cdd:cd13248   9 MSGWLHKQggsgLKN---WRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISPAPPSDEISRKFAFKAeHANMRTYYF 85
                        90
                ....*....|....*....
gi 50510641 129 RAESKYTFERWIDVIKRAS 147
Cdd:cd13248  86 AADTAEEMEQWMNAMSLAA 104
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
54-148 4.88e-17

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 72.58  E-value: 4.88e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641     54 LSGYLLRKFKNSN-GWQKLWVVFTNFCLFFYKTHQDDY---PLASLPLLGYSVSLPREADSIHKDYVFKLQFKS-HVYFF 128
Cdd:smart00233   3 KEGWLYKKSGGGKkSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDrKTLLL 82
                           90       100
                   ....*....|....*....|
gi 50510641    129 RAESKYTFERWIDVIKRASS 148
Cdd:smart00233  83 QAESEEEREKWVEALRKAIA 102
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
64-147 3.45e-15

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 67.76  E-value: 3.45e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  64 NSNGWQKLWVVFTN---FCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKLQFKSHVYFFRAESKYTFERWI 140
Cdd:cd13236  19 KGKTWQKVWCVIPRtepLVLYLYGAPQDVRAQRTIPLPGCEVTVPPPEERLDGRHVFKLSQSKQSHYFSAESEELQQRWL 98

                ....*..
gi 50510641 141 DVIKRAS 147
Cdd:cd13236  99 EALSRAA 105
PH pfam00169
PH domain; PH stands for pleckstrin homology.
55-148 2.82e-13

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 62.97  E-value: 2.82e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641    55 SGYLLRKFK-NSNGWQKLWVVFTNFCLFFYK---THQDDYPLASLPLLGYSVSLPREADSIHKDYVFKL----QFKSHVY 126
Cdd:pfam00169   4 EGWLLKKGGgKKKSWKKRYFVLFDGSLLYYKddkSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRTGKRTY 83
                          90       100
                  ....*....|....*....|..
gi 50510641   127 FFRAESKYTFERWIDVIKRASS 148
Cdd:pfam00169  84 LLQAESEEERKDWIKAIQSAIR 105
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
54-143 6.28e-12

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 59.09  E-value: 6.28e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRK-FKNSNGWQKLWVVFTNFCLFFYKTHQDD--YPLASLPLLGYSVslPREADSIHKDYVFKLQFKSH-VYFFR 129
Cdd:cd00821   1 KEGYLLKRgGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGILE--VEEVSPKERPHCFELVTPDGrTYYLQ 78
                        90
                ....*....|....
gi 50510641 130 AESKYTFERWIDVI 143
Cdd:cd00821  79 ADSEEERQEWLKAL 92
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
54-140 1.81e-10

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 55.35  E-value: 1.81e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRKFKNSNGWQKLWVVF-TNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSI------HKDYVFKLQFKSHVY 126
Cdd:cd13238   1 LSGYLKLKTNGRKTWSRRWFALqPDFVLYSYKSQEDKLPLTATPVPGFLVTLLEKGSAVdplndpKRPRTFKMFHVKKSY 80
                        90
                ....*....|....
gi 50510641 127 FFRAESKYTFERWI 140
Cdd:cd13238  81 YFQANDGDEQKKWV 94
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
54-143 6.17e-09

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 50.81  E-value: 6.17e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRKFKNSNG---WQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSihKDYVFKLQFKSHVYFFRA 130
Cdd:cd13326   1 YQGWLYQRRRKGKGggkWAKRWFVLKGSNLYGFRSQESTKADCVIFLPGFTVSPAPEVKS--RKYAFKVYHTGTVFYFAA 78
                        90
                ....*....|...
gi 50510641 131 ESKYTFERWIDVI 143
Cdd:cd13326  79 ESQEDMKKWLDLL 91
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
54-144 1.24e-08

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 50.32  E-value: 1.24e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLG-YSVSLPREAdsiHKDYVFKLQFKSHVYFFRAES 132
Cdd:cd13298   8 KSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSElLAVAPLKDK---KRKNVFGIYTPSKNLHFRATS 84
                        90
                ....*....|..
gi 50510641 133 KYTFERWIDVIK 144
Cdd:cd13298  85 EKDANEWVEALR 96
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
56-147 3.77e-08

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 49.54  E-value: 3.77e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSihkdYVFKLQF---KSHVYFFRAES 132
Cdd:cd13288  12 GYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGDREPLGVIVLEGCTVELAEDAEP----YAFAIRFdgpGARSYVLAAEN 87
                        90
                ....*....|....*
gi 50510641 133 KYTFERWIDVIKRAS 147
Cdd:cd13288  88 QEDMESWMKALSRAS 102
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
55-143 1.16e-07

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 47.68  E-value: 1.16e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLR---KFKNsngWQKLWVVFTNFCLFFYKtHQDDY---PLASLPLLGYSVSLPREADSihkdyVFKLQFKSHVYFF 128
Cdd:cd13282   2 AGYLTKlggKVKT---WKRRWFVLKNGELFYYK-SPNDVirkPQGQIALDGSCEIARAEGAQ-----TFEIVTEKRTYYL 72
                        90
                ....*....|....*
gi 50510641 129 RAESKYTFERWIDVI 143
Cdd:cd13282  73 TADSENDLDEWIRVI 87
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
56-147 1.62e-07

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 47.75  E-value: 1.62e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREaDSIHKDYVFKLQF-KSHVYFFRAESKY 134
Cdd:cd13301   7 GYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTITSPCL-EYGKRPLVFKLTTaKGQEHFFQACSRE 85
                        90
                ....*....|...
gi 50510641 135 TFERWIDVIKRAS 147
Cdd:cd13301  86 ERDAWAKDITKAI 98
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
55-144 4.08e-07

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 46.16  E-value: 4.08e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPL-LGYSVslprEAD-SIHKDYVFKLQFKSHVYFFRAES 132
Cdd:cd10573   6 EGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLrECSSV----QRDySQGKVNCFCLVFPERTFYMYANT 81
                        90
                ....*....|..
gi 50510641 133 KYTFERWIDVIK 144
Cdd:cd10573  82 EEEADEWVKLLK 93
PH_Skap-hom_Skap2 cd13381
Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; ...
55-144 1.12e-06

Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; Adaptor protein Skap-hom, a homolog of Skap55, which interacts with actin and with ADAP (adhesion and degranulation promoting adapter protein) undergoes tyrosine phosphorylation in response to plating of bone marrow-derived macrophages on fibronectin. Skap-hom has an N-terminal coiled-coil conformation that is involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap-hom PH domain regulates intracellular targeting; its interaction with the DM domain inhibits Skap-hom actin-based ruffles in macrophages and its binding to 3'-phosphoinositides reverses this autoinhibition. The Skap-hom PH domain binds PI[3,4]P2 and PI[3,4,5]P3, but not to PI[3]P, PI[5]P, or PI[4,5]P2. Skap2 is a downstream target of Heat shock transcription factor 4 (HSF4) and functions in the regulation of actin reorganization during lens differentiation. It is thought that SKAP2 anchors the complex of tyrosine kinase adaptor protein 2 (NCK20/focal adhesion to fibroblast growth factor receptors at the lamellipodium in lens epithelial cells. Skap2 has an N-terminal coiled-coil conformation which interacts with the SH2 domain of NCK2, a central PH domain and a C-terminal SH3 domain that associates with ADAP (adhesion and degranulation promoting adapter protein)/FYB (the Fyn binding protein). Skap2 PH domain binds to membrane lipids. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-hom have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270181  Cd Length: 106  Bit Score: 45.33  E-value: 1.12e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKFKN----SNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVslpREADSIHKDYVFKLQFK-----SHV 125
Cdd:cd13381   4 AGYLEKRRKDhsffGFEWQKRWCALSNSVFYYYGSDKDKQQKGEFAIDGYDV---KMNNTLRKDAKKDCCFEicapdKRV 80
                        90
                ....*....|....*....
gi 50510641 126 YFFRAESKYTFERWIDVIK 144
Cdd:cd13381  81 YQFTAASPKEAEEWVQQIK 99
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
55-148 3.33e-06

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 43.93  E-value: 3.33e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRK---FKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKdYVFKL---QFKSHVYFF 128
Cdd:cd13308  12 SGTLTKKggsQKTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRAAEERTSKLK-FVFKIihlSPDHRTWYF 90
                        90       100
                ....*....|....*....|
gi 50510641 129 RAESKYTFERWIDVIKRASS 148
Cdd:cd13308  91 AAKSEDEMSEWMEYIRREID 110
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
56-144 3.51e-06

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 43.77  E-value: 3.51e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLR-KFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLlgYSVSLPREADSIHKDYVFKLQF----KShvYFFRA 130
Cdd:cd13299  10 GYLQVlKKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPI--DDIIDVVELDPLSKSKKWCLQIitpeKR--IRFCA 85
                        90
                ....*....|....
gi 50510641 131 ESKYTFERWIDVIK 144
Cdd:cd13299  86 DDEESLIKWLGALK 99
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
55-150 9.26e-06

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 42.76  E-value: 9.26e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRK---FKNsngWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVS-LPREADSIHKdYVFKL-----QFKSHV 125
Cdd:cd13263   6 SGWLKKQgsiVKN---WQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPGNKVKeVPFNPEEPGK-FLFEIipgggGDRMTS 81
                        90       100
                ....*....|....*....|....*....
gi 50510641 126 ----YFFRAESKYTFERWIDVIKRASSSP 150
Cdd:cd13263  82 nhdsYLLMANSQAEMEEWVKVIRRVIGSP 110
PH_RasGRF1_2 cd13261
Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; ...
48-147 2.03e-05

Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; RasGRF1 (also called GRF1; CDC25Mm/Ras-specific nucleotide exchange factor CDC25; GNRP/Guanine nucleotide-releasing protein) and RasGRF2 (also called GRF2; Ras guanine nucleotide exchange factor 2) are a family of guanine nucleotide exchange factors (GEFs). They both promote the exchange of Ras-bound GDP by GTP, thereby regulating the RAS signaling pathway. RasGRF1 and RasGRF2 form homooligomers and heterooligomers. GRF1 has 3 isoforms and GRF2 has 2 isoforms. The longest isoforms of RasGRF1 and RasGRF2 contain the following domains: a Rho-GEF domain sandwiched between 2 PH domains, IQ domains, a REM (Ras exchanger motif) domain, and a Ras-GEF domainwhich gives them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. Their IQ domains allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. GRF1 also mediates the action of dopamine receptors that signal through cAMP. GRF1 and GRF2 play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270081  Cd Length: 136  Bit Score: 42.41  E-value: 2.03e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  48 AAVENQLSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLG-YSVSLP------READSIHKDYVFKLQ 120
Cdd:cd13261   1 ARKDGTKRGYLSKKTSDSGKWHERWFALYQNLLFYFENESSSRPSGLYLLEGcYCERLPtpkgalKGKDHLEKQHYFTIS 80
                        90       100       110
                ....*....|....*....|....*....|
gi 50510641 121 FK---SHVYFFRAESKYTFERWIDVIKRAS 147
Cdd:cd13261  81 FRhenQRQYELRAETESDCDEWVEAIKQAS 110
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
53-146 2.49e-05

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 41.54  E-value: 2.49e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  53 QLSGYLLRKFKNS---NGWQKLWVVF--TNFCLFFYKTHQDDYPLASLPLLGYSVSLPREAdsihKDYVFKLQFKSHVYF 127
Cdd:cd01265   1 RLCGYLNKLETRGlglKGWKRRWFVLdeSKCQLYYYRSPQDATPLGSIDLSGAAFSYDPEA----EPGQFEIHTPGRVHI 76
                        90
                ....*....|....*....
gi 50510641 128 FRAESKYTFERWIDVIKRA 146
Cdd:cd01265  77 LKASTRQAMLYWLQALQSK 95
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
56-148 2.50e-05

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270116  Cd Length: 107  Bit Score: 41.70  E-value: 2.50e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKfKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLpREADSIHKDYVFKL-QFKSHVYFFRAESKY 134
Cdd:cd13306  16 AFLLRK-KRFGQWAKQLCVIKDNRLLCYKSSKDQQPQLELPLLGCSVIY-VPKDGRRKKHELKFtPPGAEALVLAVQSKE 93
                        90
                ....*....|....
gi 50510641 135 TFERWIDVIKRASS 148
Cdd:cd13306  94 QAEQWLKVIREVSS 107
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
56-150 2.70e-05

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 41.62  E-value: 2.70e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKN----SNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREAdsiHKDYVFKL---QFKShvYFF 128
Cdd:cd01260  17 GWLWKKKEAksffGQKWKKYWFVLKGSSLYWYSNQQDEKAEGFINLPDFKIERASEC---KKKYAFKAchpKIKT--FYF 91
                        90       100
                ....*....|....*....|..
gi 50510641 129 RAESKYTFERWIDVIKRASSSP 150
Cdd:cd01260  92 AAENLDDMNKWLSKLNMAINKY 113
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
55-146 3.10e-05

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 41.24  E-value: 3.10e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLlgYSVSLPREADSIHKDYVFKLQFKSHVYFFRAESKY 134
Cdd:cd13255   9 AGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDL--TDIHTCTEVQLKKHDNTFGIVTPARTFYVQADSKA 86
                        90
                ....*....|..
gi 50510641 135 TFERWIDVIKRA 146
Cdd:cd13255  87 EMESWISAINLA 98
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
56-149 3.40e-05

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 41.35  E-value: 3.40e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKNSN----GWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREAD-SIHKDYVFKLQFKS-HVYFFR 129
Cdd:cd13266   5 GYLEKRRKDHSffgsEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINGYDVRMNPTLRkDGKKDCCFELVCPDkRTYQFT 84
                        90       100
                ....*....|....*....|
gi 50510641 130 AESKYTFERWIDVIKRASSS 149
Cdd:cd13266  85 AASPEDAEDWVDQISFILQD 104
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
54-146 3.48e-05

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 40.83  E-value: 3.48e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  54 LSGYLLRK--FKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLlgYSVSLPREAdsihKDYVFKLQFKSHVYFFRAE 131
Cdd:cd13253   2 KSGYLDKQggQGNNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPL--SAISTVRAV----GDNKFELVTTNRTFVFRAE 75
                        90
                ....*....|....*
gi 50510641 132 SKYTFERWIDVIKRA 146
Cdd:cd13253  76 SDDERNLWCSTLQAA 90
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
55-149 3.80e-05

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 41.15  E-value: 3.80e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVslpREADSIHKDYVFKL-------QFKS---- 123
Cdd:cd01252   6 EGWLLKLGGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENLSV---REVEDKKKPFCFELyspsngqVIKAcktd 82
                        90       100       110
                ....*....|....*....|....*....|....*.
gi 50510641 124 ---------H-VYFFRAESKYTFERWIDVIKRASSS 149
Cdd:cd01252  83 sdgkvvegnHtVYRISAASEEERDEWIKSIKASISR 118
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
66-155 4.69e-05

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 40.73  E-value: 4.69e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  66 NGWQKLWVVFTNFCLFFYKTHQDdyplaslplLGYSVslpREADSIHKDYV---------FKLQFKSHVYFFRAESKYTF 136
Cdd:cd13283  13 HGWQDRYFVLKDGTLSYYKSESE---------KEYGC---RGSISLSKAVIkphefdecrFDVSVNDSVWYLRAESPEER 80
                        90       100
                ....*....|....*....|
gi 50510641 137 ERWIDVIKRA-SSSPGRPPS 155
Cdd:cd13283  81 QRWIDALESHkAASGYGSSS 100
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
29-146 2.04e-04

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 39.14  E-value: 2.04e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  29 TTMHVCWYRNTSVSRADhsaaveNQLSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDY-PLASLPLlGYSVSLPRE 107
Cdd:cd13215   4 TSKHLCFFAYLPKRSGA------VIKSGYLSKRSKRTLRYTRYWFVLKGDTLSWYNSSTDLYfPAGTIDL-RYATSIELS 76
                        90       100       110
                ....*....|....*....|....*....|....*....
gi 50510641 108 ADSIHKDYVFKLQFKSHVYFFRAESKYTFERWIDVIKRA 146
Cdd:cd13215  77 KSNGEATTSFKIVTNSRTYKFKADSETSADEWVKALKKQ 115
PH_PLEKHD1 cd13281
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ...
53-146 6.21e-04

Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270099  Cd Length: 139  Bit Score: 38.46  E-value: 6.21e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  53 QLSGYLLRKFKN--SNGWQKLWVVFTNFCLFFYKT----------HQDDYPLASLPLLGYSVSLPREADsihKDYVFKL- 119
Cdd:cd13281  13 QLHGILWKKPFGhqSAKWSKRFFIIKEGFLLYYSEsekkdfektrHFNIHPKGVIPLGGCSIEAVEDPG---KPYAISIs 89
                        90       100
                ....*....|....*....|....*....
gi 50510641 120 --QFKSHVyFFRAESKYTFERWIDVIKRA 146
Cdd:cd13281  90 hsDFKGNI-ILAADSEFEQEKWLDMLRES 117
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
56-143 6.78e-04

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 37.53  E-value: 6.78e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKN----SNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSL-PREADSIHKDYVFKLQFKS-HVYFFR 129
Cdd:cd13380   5 GYLEKRSKDhsffGSEWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAQMaPHLRKDSRRDSCFELTTPGrRTYQFT 84
                        90
                ....*....|....
gi 50510641 130 AESKYTFERWIDVI 143
Cdd:cd13380  85 AASPSEARDWVDQI 98
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
68-159 1.05e-03

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 36.91  E-value: 1.05e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  68 WQKLWVVFTNFCLFFYKT---HQDDYPLASLPLlGYSVSLPREADSIHKDYVFKLQFKSHVYFFRAESKYTFERWIDVIK 144
Cdd:cd13276  15 WRRRWFVLKQGKLFWFKEpdvTPYSKPRGVIDL-SKCLTVKSAEDATNKENAFELSTPEETFYFIADNEKEKEEWIGAIG 93
                        90
                ....*....|....*
gi 50510641 145 RASSSPGRppSFTQD 159
Cdd:cd13276  94 RAIVKHSR--SVTDD 106
PH_RalGPS1_2 cd13310
Ral GEF with PH domain and SH3 binding motif 1 and 2 Pleckstrin homology (PH) domain; RalGPS1 ...
56-150 1.25e-03

Ral GEF with PH domain and SH3 binding motif 1 and 2 Pleckstrin homology (PH) domain; RalGPS1 (also called Ral GEF with PH domain and SH3 binding motif 1;RALGEF2/ Ral guanine nucleotide exchange factor 2; RalA exchange factor RalGPS1; Ral guanine nucleotide exchange factor RalGPS1A2; ras-specific guanine nucleotide-releasing factor RalGPS1) and RalGPS2 (also called Ral GEF with PH domain and SH3 binding motif 2; Ral-A exchange factor RalGPS2; ras-specific guanine nucleotide-releasing factor RalGPS22). They activate small GTPase Ral proteins such as RalA and RalB by stimulating the exchange of Ral bound GDP to GTP, thereby regulating various downstream cellular processes. Structurally they contain an N-terminal Cdc25-like catalytic domain, followed by a PXXP motif and a C-terminal PH domain. The Cdc25-like catalytic domain interacts with Ral and its PH domain ensures the correct membrane localization. Its PXXP motif is thought to interact with the SH3 domain of Grb2. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270120  Cd Length: 116  Bit Score: 36.85  E-value: 1.25e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  56 GYLLRKFKNSNG-------WQKLWVVFTNFCLFFYK------THQDDY---PLASLPLLGYSVSLPreADSIHKDyVFKL 119
Cdd:cd13310   4 GCLRRKTVLKEGrkptvssWQRYWVQLWGTSLVYYApkslkgTERSDFksePCKIVSISGWMVVLG--DDPEHPD-SFQL 80
                        90       100       110
                ....*....|....*....|....*....|...
gi 50510641 120 Q--FKSHVYFFRAESKYTFERWIDVIKRASSSP 150
Cdd:cd13310  81 TdpEKGNVYKFRAGSRSNALLWLKHLKDACKGN 113
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
55-147 4.21e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 35.04  E-value: 4.21e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKFKNSNGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSLPREADSIHKDYVFKL--QFKSHVYFFRAES 132
Cdd:cd13316   3 SGWMKKRGERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPFRGSYGFKLvpPAVPKVHYFAVDE 82
                        90
                ....*....|....*
gi 50510641 133 KYTFERWIDVIKRAS 147
Cdd:cd13316  83 KEELREWMKALMKAT 97
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
55-146 6.78e-03

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 34.65  E-value: 6.78e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  55 SGYLLRKfknSNG-----WQKLWVVFTNFclFFYKTHQDDY-PLASLPLLGYSVSLPREadsihKDYVFKLQFKSHVYFF 128
Cdd:cd13251  13 SGYLLKK---SEGkirkvWQKRRCSIKDG--FLTISHADENkPPAKLNLLTCQVKLVPE-----DKKCFDLISHNRTYHF 82
                        90
                ....*....|....*...
gi 50510641 129 RAESKYTFERWIDVIKRA 146
Cdd:cd13251  83 QAEDENDANAWMSVLKNS 100
PH1_Tiam1_2 cd01230
T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, N-terminal domain; ...
64-149 7.89e-03

T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, N-terminal domain; Tiam1 activates Rac GTPases to induce membrane ruffling and cell motility while Tiam2 (also called STEF (SIF (still life) and Tiam1 like-exchange factor) contributes to neurite growth. Tiam1/2 are Dbl-family of GEFs that possess a Dbl(DH) domain with a PH domain in tandem. DH-PH domain catalyzes the GDP/GTP exchange reaction in the GTPase cycle and facillitating the switch between inactive GDP-bound and active GTP-bound states. Tiam1/2 possess two PH domains, which are often referred to as PHn and PHc domains. The DH-PH tandem domain is made up of the PHc domain while the PHn is part of a novel N-terminal PHCCEx domain which is made up of the PHn domain, a coiled coil region(CC), and an extra region (Ex). PHCCEx mediates binding to plasma membranes and signalling proteins in the activation of Rac GTPases. The PH domain resembles the beta-spectrin PH domain, suggesting non-canonical phosphatidylinositol binding. CC and Ex form a positively charged surface for protein binding. There are 2 motifs in Tiam1/2-interacting proteins that bind to the PHCCEx domain: Motif-I in CD44, ephrinBs, and the NMDA receptor and Motif-II in Par3 and JIP2.Neither of these fall in the PHn domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269937  Cd Length: 127  Bit Score: 35.13  E-value: 7.89e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 50510641  64 NSNGWQKLWVVFTNFCLFFYKTH------QDDYPLASLPLLGYSV-SLPREADsihKDYVFKLQFK-SHVYFFRAESKYT 135
Cdd:cd01230  27 TRRKWKKYWVCLKGCTLLFYECDersgidENSEPKHALFVEGSIVqAVPEHPK---KDFVFCLSNSfGDAYLFQATSQTE 103
                        90
                ....*....|....
gi 50510641 136 FERWIDVIKRASSS 149
Cdd:cd01230 104 LENWVTAIHSACAS 117
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH